触觉表面粗糙度测量系统在机床现场测量中的应用场景

Clemens Sulz, F. Bleicher
{"title":"触觉表面粗糙度测量系统在机床现场测量中的应用场景","authors":"Clemens Sulz, F. Bleicher","doi":"10.3390/metrology3030016","DOIUrl":null,"url":null,"abstract":"The rate of automation in European industry is increasing continuously. In production metrology, the trend is shifting from measurement laboratories towards integration of metrology into the production process. Increasing levels of automation and the current skills shortage are driving demand for autonomous production systems. In this project, a roughness measurement system was developed that is fully integrated into machine tools and enables fully automatic roughness measurement of part surfaces during the machining process. Using a skidless measurement system, it was possible to obtained measured roughness values comparable to those obtained in measuring rooms under optimal conditions. The present paper shows the development process of the prototype and provides an overview of different application scenarios for in situ measurement of machine tools. In situ roughness measurement has high potential in the future of metrology in industrial applications. Not only can surfaces be measured directly in the process, sub-processes can be triggered based on the measured values, allowing the production process to react flexibly to actual conditions. Potential improvements in metrology and significant optimizations of the entire production chain are highlighted in this paper.","PeriodicalId":100666,"journal":{"name":"Industrial Metrology","volume":"140 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application Scenarios of a Tactile Surface Roughness Measurement System for In Situ Measurement in Machine Tools\",\"authors\":\"Clemens Sulz, F. Bleicher\",\"doi\":\"10.3390/metrology3030016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rate of automation in European industry is increasing continuously. In production metrology, the trend is shifting from measurement laboratories towards integration of metrology into the production process. Increasing levels of automation and the current skills shortage are driving demand for autonomous production systems. In this project, a roughness measurement system was developed that is fully integrated into machine tools and enables fully automatic roughness measurement of part surfaces during the machining process. Using a skidless measurement system, it was possible to obtained measured roughness values comparable to those obtained in measuring rooms under optimal conditions. The present paper shows the development process of the prototype and provides an overview of different application scenarios for in situ measurement of machine tools. In situ roughness measurement has high potential in the future of metrology in industrial applications. Not only can surfaces be measured directly in the process, sub-processes can be triggered based on the measured values, allowing the production process to react flexibly to actual conditions. Potential improvements in metrology and significant optimizations of the entire production chain are highlighted in this paper.\",\"PeriodicalId\":100666,\"journal\":{\"name\":\"Industrial Metrology\",\"volume\":\"140 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industrial Metrology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/metrology3030016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Metrology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/metrology3030016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

欧洲工业自动化的速度在不断提高。在生产计量中,趋势是从测量实验室转向将计量集成到生产过程中。自动化水平的提高和当前的技能短缺正在推动对自主生产系统的需求。在这个项目中,开发了一个完全集成到机床中的粗糙度测量系统,可以在加工过程中对零件表面进行全自动粗糙度测量。使用无滑动测量系统,可以获得与在最佳条件下的测量室中获得的粗糙度值相当的测量值。本文介绍了样机的研制过程,并概述了机床现场测量的不同应用场景。原位粗糙度测量在未来的工业计量应用中具有很大的潜力。不仅可以在过程中直接测量表面,还可以根据测量值触发子过程,从而使生产过程能够灵活地对实际情况做出反应。本文强调了计量学的潜在改进和整个生产链的重大优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application Scenarios of a Tactile Surface Roughness Measurement System for In Situ Measurement in Machine Tools
The rate of automation in European industry is increasing continuously. In production metrology, the trend is shifting from measurement laboratories towards integration of metrology into the production process. Increasing levels of automation and the current skills shortage are driving demand for autonomous production systems. In this project, a roughness measurement system was developed that is fully integrated into machine tools and enables fully automatic roughness measurement of part surfaces during the machining process. Using a skidless measurement system, it was possible to obtained measured roughness values comparable to those obtained in measuring rooms under optimal conditions. The present paper shows the development process of the prototype and provides an overview of different application scenarios for in situ measurement of machine tools. In situ roughness measurement has high potential in the future of metrology in industrial applications. Not only can surfaces be measured directly in the process, sub-processes can be triggered based on the measured values, allowing the production process to react flexibly to actual conditions. Potential improvements in metrology and significant optimizations of the entire production chain are highlighted in this paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信