{"title":"基于社会力模型的烟雾扩散过程中有领导者的行人疏散模型","authors":"J. Makmul","doi":"10.1155/2023/1029883","DOIUrl":null,"url":null,"abstract":"The pedestrian evacuation process during the propagation of smoke in case with and without guider is investigated. The effects of leaders on the evacuation are considered. The model is based on the social force model for pedestrians’ motions. The advection–diffusion equation is applied for the dispersion of smoke. The movement direction of a guider is guided by the solution of the Eikonal equation. It relies on the desired speed and the smoke density. A pedestrian who is not a guider follows the rule termed ‘flow with the stream’ and ‘following the wall’. We perform different numerical experiments in a room with one and two exits. The results show that the guiders effect on the evacuation time when they are large number of individuals in simulation. It can help to increase the number of evacuees. With small number of individuals in the experiment, the effect of guiders on evacuation time is not obvious. Further, simulation results are found that the domain with two exits provides higher number of outside pedestrians than the domain with a single door. Longer evacuation time period can increase the number of evacuees. The visibility range of a pedestrian is reduced when an additional smoke source is added to the system. It decreases the number of evacuees. The results of the proposed model are discussed and compared with the existing models.","PeriodicalId":45541,"journal":{"name":"Modelling and Simulation in Engineering","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Pedestrian Evacuation Model with Leaders during the Smoke Dispersion Based on a Social Force Model\",\"authors\":\"J. Makmul\",\"doi\":\"10.1155/2023/1029883\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The pedestrian evacuation process during the propagation of smoke in case with and without guider is investigated. The effects of leaders on the evacuation are considered. The model is based on the social force model for pedestrians’ motions. The advection–diffusion equation is applied for the dispersion of smoke. The movement direction of a guider is guided by the solution of the Eikonal equation. It relies on the desired speed and the smoke density. A pedestrian who is not a guider follows the rule termed ‘flow with the stream’ and ‘following the wall’. We perform different numerical experiments in a room with one and two exits. The results show that the guiders effect on the evacuation time when they are large number of individuals in simulation. It can help to increase the number of evacuees. With small number of individuals in the experiment, the effect of guiders on evacuation time is not obvious. Further, simulation results are found that the domain with two exits provides higher number of outside pedestrians than the domain with a single door. Longer evacuation time period can increase the number of evacuees. The visibility range of a pedestrian is reduced when an additional smoke source is added to the system. It decreases the number of evacuees. The results of the proposed model are discussed and compared with the existing models.\",\"PeriodicalId\":45541,\"journal\":{\"name\":\"Modelling and Simulation in Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modelling and Simulation in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/1029883\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modelling and Simulation in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/1029883","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
A Pedestrian Evacuation Model with Leaders during the Smoke Dispersion Based on a Social Force Model
The pedestrian evacuation process during the propagation of smoke in case with and without guider is investigated. The effects of leaders on the evacuation are considered. The model is based on the social force model for pedestrians’ motions. The advection–diffusion equation is applied for the dispersion of smoke. The movement direction of a guider is guided by the solution of the Eikonal equation. It relies on the desired speed and the smoke density. A pedestrian who is not a guider follows the rule termed ‘flow with the stream’ and ‘following the wall’. We perform different numerical experiments in a room with one and two exits. The results show that the guiders effect on the evacuation time when they are large number of individuals in simulation. It can help to increase the number of evacuees. With small number of individuals in the experiment, the effect of guiders on evacuation time is not obvious. Further, simulation results are found that the domain with two exits provides higher number of outside pedestrians than the domain with a single door. Longer evacuation time period can increase the number of evacuees. The visibility range of a pedestrian is reduced when an additional smoke source is added to the system. It decreases the number of evacuees. The results of the proposed model are discussed and compared with the existing models.
期刊介绍:
Modelling and Simulation in Engineering aims at providing a forum for the discussion of formalisms, methodologies and simulation tools that are intended to support the new, broader interpretation of Engineering. Competitive pressures of Global Economy have had a profound effect on the manufacturing in Europe, Japan and the USA with much of the production being outsourced. In this context the traditional interpretation of engineering profession linked to the actual manufacturing needs to be broadened to include the integration of outsourced components and the consideration of logistic, economical and human factors in the design of engineering products and services.