快速构建自动调谐器的自动调谐协议

IF 0.9 Q3 COMPUTER SCIENCE, THEORY & METHODS
Junhong Liu, Guangming Tan, Yulong Luo, Jiajia Li, Z. Mo, Ninghui Sun
{"title":"快速构建自动调谐器的自动调谐协议","authors":"Junhong Liu, Guangming Tan, Yulong Luo, Jiajia Li, Z. Mo, Ninghui Sun","doi":"10.1145/3291527","DOIUrl":null,"url":null,"abstract":"Automatic performance tuning (Autotuning) is an increasingly critical tuning technique for the high portable performance of Exascale applications. However, constructing an autotuner from scratch remains a challenge, even for domain experts. In this work, we propose a performance tuning and knowledge management suite (PAK) to help rapidly build autotuners. In order to accommodate existing autotuning techniques, we present an autotuning protocol that is composed of an extractor, producer, optimizer, evaluator, and learner. To achieve modularity and reusability, we also define programming interfaces for each protocol component as the fundamental infrastructure, which provides a customizable mechanism to deploy knowledge mining in the performance database. PAK’s usability is demonstrated by studying two important computational kernels: stencil computation and sparse matrix-vector multiplication (SpMV). Our proposed autotuner based on PAK shows comparable performance and higher productivity than traditional autotuners by writing just a few tens of code using our autotuning protocol.","PeriodicalId":42115,"journal":{"name":"ACM Transactions on Parallel Computing","volume":"43 1","pages":"9:1-9:25"},"PeriodicalIF":0.9000,"publicationDate":"2019-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"An Autotuning Protocol to Rapidly Build Autotuners\",\"authors\":\"Junhong Liu, Guangming Tan, Yulong Luo, Jiajia Li, Z. Mo, Ninghui Sun\",\"doi\":\"10.1145/3291527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic performance tuning (Autotuning) is an increasingly critical tuning technique for the high portable performance of Exascale applications. However, constructing an autotuner from scratch remains a challenge, even for domain experts. In this work, we propose a performance tuning and knowledge management suite (PAK) to help rapidly build autotuners. In order to accommodate existing autotuning techniques, we present an autotuning protocol that is composed of an extractor, producer, optimizer, evaluator, and learner. To achieve modularity and reusability, we also define programming interfaces for each protocol component as the fundamental infrastructure, which provides a customizable mechanism to deploy knowledge mining in the performance database. PAK’s usability is demonstrated by studying two important computational kernels: stencil computation and sparse matrix-vector multiplication (SpMV). Our proposed autotuner based on PAK shows comparable performance and higher productivity than traditional autotuners by writing just a few tens of code using our autotuning protocol.\",\"PeriodicalId\":42115,\"journal\":{\"name\":\"ACM Transactions on Parallel Computing\",\"volume\":\"43 1\",\"pages\":\"9:1-9:25\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2019-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Parallel Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3291527\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Parallel Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3291527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 4

摘要

自动性能调优(Autotuning)对于Exascale应用程序的高可移植性能来说是一项日益重要的调优技术。然而,从头开始构建自动调谐器仍然是一个挑战,即使对领域专家来说也是如此。在这项工作中,我们提出了一个性能调优和知识管理套件(PAK)来帮助快速构建自动调优器。为了适应现有的自动调优技术,我们提出了一个由提取器、生产者、优化器、评估器和学习者组成的自动调优协议。为了实现模块化和可重用性,我们还为每个协议组件定义了编程接口作为基础架构,为在性能数据库中部署知识挖掘提供了可定制的机制。通过研究两个重要的计算内核:模板计算和稀疏矩阵向量乘法(SpMV),证明了PAK的可用性。我们提出的基于PAK的自动调谐器通过使用我们的自动调谐协议编写几十个代码,显示出与传统自动调谐器相当的性能和更高的生产力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Autotuning Protocol to Rapidly Build Autotuners
Automatic performance tuning (Autotuning) is an increasingly critical tuning technique for the high portable performance of Exascale applications. However, constructing an autotuner from scratch remains a challenge, even for domain experts. In this work, we propose a performance tuning and knowledge management suite (PAK) to help rapidly build autotuners. In order to accommodate existing autotuning techniques, we present an autotuning protocol that is composed of an extractor, producer, optimizer, evaluator, and learner. To achieve modularity and reusability, we also define programming interfaces for each protocol component as the fundamental infrastructure, which provides a customizable mechanism to deploy knowledge mining in the performance database. PAK’s usability is demonstrated by studying two important computational kernels: stencil computation and sparse matrix-vector multiplication (SpMV). Our proposed autotuner based on PAK shows comparable performance and higher productivity than traditional autotuners by writing just a few tens of code using our autotuning protocol.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Parallel Computing
ACM Transactions on Parallel Computing COMPUTER SCIENCE, THEORY & METHODS-
CiteScore
4.10
自引率
0.00%
发文量
16
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信