一种可重构分层生物智能图像传感器

Pankaj Bhowmik, Md Jubaer Hossain Pantho, S. Saha, C. Bobda
{"title":"一种可重构分层生物智能图像传感器","authors":"Pankaj Bhowmik, Md Jubaer Hossain Pantho, S. Saha, C. Bobda","doi":"10.1109/ISVLSI.2019.00039","DOIUrl":null,"url":null,"abstract":"This paper presents a hardware architecture to extract features from an image using the concepts of bio-inspired computing and a method of converting sequential image processing to parallel computational processing units that can execute on the sensor. These computational units are oriented on vertically integrated hierarchical planes and enabled with a region based Attention Module which separates the Regions of Interest (ROIs) from the image. In each layer, the computational units work in parallel and introduce massive parallelism at the pixel level. At the same time, the design saves dynamic power by dynamically enabling and disabling the computational units which ensure high-performance and high-throughput. Moreover, the units are made reconfigurable to support a wide range of machine vision applications by forming a basic structure that is common to all operations and reconfigurable parts for a specific application. Our simulation result shows the design achieves 4.852X power savings on ROIs while processing at 465 Kfps with 800 MHz clock frequency.","PeriodicalId":6703,"journal":{"name":"2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","volume":"2014 1","pages":"169-174"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Reconfigurable Layered-Based Bio-Inspired Smart Image Sensor\",\"authors\":\"Pankaj Bhowmik, Md Jubaer Hossain Pantho, S. Saha, C. Bobda\",\"doi\":\"10.1109/ISVLSI.2019.00039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a hardware architecture to extract features from an image using the concepts of bio-inspired computing and a method of converting sequential image processing to parallel computational processing units that can execute on the sensor. These computational units are oriented on vertically integrated hierarchical planes and enabled with a region based Attention Module which separates the Regions of Interest (ROIs) from the image. In each layer, the computational units work in parallel and introduce massive parallelism at the pixel level. At the same time, the design saves dynamic power by dynamically enabling and disabling the computational units which ensure high-performance and high-throughput. Moreover, the units are made reconfigurable to support a wide range of machine vision applications by forming a basic structure that is common to all operations and reconfigurable parts for a specific application. Our simulation result shows the design achieves 4.852X power savings on ROIs while processing at 465 Kfps with 800 MHz clock frequency.\",\"PeriodicalId\":6703,\"journal\":{\"name\":\"2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)\",\"volume\":\"2014 1\",\"pages\":\"169-174\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISVLSI.2019.00039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISVLSI.2019.00039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种硬件架构,利用生物启发计算的概念从图像中提取特征,并提出了一种将顺序图像处理转换为可在传感器上执行的并行计算处理单元的方法。这些计算单元面向垂直集成的层次平面,并启用基于区域的注意力模块,该模块将感兴趣的区域(roi)从图像中分离出来。在每一层中,计算单元并行工作,并在像素级引入大量并行性。同时,该设计通过动态启用和禁用计算单元来节省动态功耗,确保高性能和高吞吐量。此外,这些单元是可重构的,通过形成一个对所有操作和特定应用的可重构部件通用的基本结构来支持广泛的机器视觉应用。我们的仿真结果表明,该设计在800 MHz时钟频率下以465 Kfps处理时,在roi上节省了4.85倍的功耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Reconfigurable Layered-Based Bio-Inspired Smart Image Sensor
This paper presents a hardware architecture to extract features from an image using the concepts of bio-inspired computing and a method of converting sequential image processing to parallel computational processing units that can execute on the sensor. These computational units are oriented on vertically integrated hierarchical planes and enabled with a region based Attention Module which separates the Regions of Interest (ROIs) from the image. In each layer, the computational units work in parallel and introduce massive parallelism at the pixel level. At the same time, the design saves dynamic power by dynamically enabling and disabling the computational units which ensure high-performance and high-throughput. Moreover, the units are made reconfigurable to support a wide range of machine vision applications by forming a basic structure that is common to all operations and reconfigurable parts for a specific application. Our simulation result shows the design achieves 4.852X power savings on ROIs while processing at 465 Kfps with 800 MHz clock frequency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信