瓦纳迪亚离子增殖多项式电解和质子导电性

L. Kovalenko, V. A. Burmistrov
{"title":"瓦纳迪亚离子增殖多项式电解和质子导电性","authors":"L. Kovalenko, V. A. Burmistrov","doi":"10.17308/kcmf.2019.21/758","DOIUrl":null,"url":null,"abstract":"Методом импедансной спектроскопии исследованы протонпроводящие свойства полисурьмяной кислоты (ПСК), допированной ионами ванадия. Для твердых растворов состава H2Sb2–xVxO6·nH2O, кристаллизующихся в структурном типе пирохлора (пр. гр. симм. Fd3m), показано, что увеличение количества ванадия в образце приводит к росту удельной протонной проводимости, которая для крайнего твердого раствора замещения H2Sb1.52V0.48O6·nH2O составляет 66 мСм/м. Из анализа данных диэлектрической спектроскопии при температурах 218–298 К определена энергия активации проводимости, которая составила 30±2 КДж/моль. Предложен механизм протонного транспорта,         согласно которому в допированных ионами ванадия ПСК проводимость осуществляется посистеме водородных связей, образованных молекулами воды, расположенными в гексагональных каналах структуры типа пирохлора, и анионами кислорода октаэдра, формирующего каркас структуры \n  \n  \nREFERENCES \n \nStenina I. A., Yaroslavtsev A. B. Low- and intermediate-temperature proton-conducting electrolytes. Mater. 2017. v. 53(3), pp. 253–262. https://doi.org/10.1134/S0020168517030104 \nIvanchev S. S., Myakin S. V. Polymer membranesfor fuel cells: manufacture, structure, modifi cation, properties. Russian Chemical Reviews, 2010, v. 79(2), pp.101-117. https://doi.org/10.1070/RC2010v079n02ABE H004070 \nLuo T., Abdu S., Wessling M. Selectivity of ionexchange membranes: A review. Membr. Sci., 2018,v. 555, pp. 429–454. https://doi.org/10.1016/j.memsci.2018.03.051 \nFomenkov A. I., Pinus Yu., Peregudov A. S., Zubavichus Ya. V., Yaroslavtsev A. B., Khokhlov A. R. Proton conductivity of poly(arylene ether ketones) with different sulfonation degrees: Improvement via incorporation of nanodisperse zirconium acid phosphate. Polymer Science Series B, 2007, v. 49(7–8), pp. 177-181. https://doi.org/10.1134/S1560090407070032 \nPrikhno I. A., Ivanova K. A., Don G. M., Yaroslavtsev A.B. Hybrid membranes based on short side chain perfl uorinated sulfonic acid membranes (Inion) and heteropoly acid salts. Mendeleev Commun, 2018, v. 28(6), pp. 657–658. https://doi.org/10.1016/j.mencom.2018. 11.033 \nKlestchov D., Burmistrov V., Sheinkman A., Pletnev R. Composition and structure of phases formed in the process of hydrated antimony pentoxide thermolysis. Journal of Solid State Chemistry, 1991, v. 94(2), pp. 220–226. https://doi.ors/10.1016/0022-4596(91)90186-L \nYaroshenko F. A., Burmistrov V. A. Dielectric relaxation and protonic conductivity of polyantimonic crystalline acid at low temperatures. Russian Journal of Electrochemistry, 2015, v. 51(5), pp. 391–396. https://doi.org/10.1134/S1023193515050195 \nYaroshenko F. A., Burmistrov V. A. Proton conductivity of polyantimonic acid studied by impedance spectroscopy in the temperature range 370–480 K. Mater., 2015, v. 51(8), pp. 783–787. https://doi.org/10.1134/S0020168515080208 \nShchelkanova M. S., Pantyukhina M. I., Antonov B. D., Kalashnova A. V. Produce new solid electrolytes based on the Li 8–x Zr 1–xVxO6 system. Butlerov Communications, 2014, v. 38(5), pp. 96–102. URL: https://butlerov.com/stat/reports/details. asp?lang=ru&id=15798 (in Russ.) \nKovalenko L. Yu., Burmistrov V. A., Lupitskaya Yu. A., Kovalev I. N., Galimov D. M. Synthesis of the solid solutions H2Sb2–xVxO6·nH2O with the pyrochlore-type structure. Butlerov Communications, 2018, v. 55(8), pp. 24–30. URL: https://butlerov.com/stat/reports/ details.asp?lang=ru&id=30164 (in Russ.) \nKovalenko L. Yu., Burmistrov V. A., Lupitskaya Yu.A. Vliyanie otnositel’noy vlazhnosti na protonnuyu provodimost’ polisur’myanykh kislot, dopirovannykh ionami vanadiya [Effect of relative humidity on the proton conductivity of poly-antimony acids doped with vanadium ions]. “Physico-chemical processes in condensed media and interphase boundaries” (FAGRAN-2018)”, materials of the 8th All-Russian Conference with international participation, October 8–11, 2018, Voronezh, pp. 524–525. URL: https://elibrary.ru/item. asp?id=36837531. (in Russ.) \nMalyshkina I. A., Makhaeva E. E., Gavrilova N. D., Khokhlov A. R. Peculiarities of low-frequency dielectric dispersion in polymer networks based on poly(methacrylic acid). Polymer science. Series A, 2000, v. 42(8), pp. 325–328. URL: https://elibrary.ru/item. asp?id=13345750 \nKleschev D. G. Mekhanizm fazovykh prevrashcheniy pri termolize gidrata pen-taoksida v intervale 470–730 K [The mechanism of phase transformations during thermolysis of pentoxide hydrate in the range of 470–730 K]. News of the Academy of Sciences of the USSR. Inorganic materials, 1987, v. 23(7), pp. 1173 –1176. (in Russ.) \nArmstrong R. D., Dickinson T., Willis P. M. The A. C. impedance of powdered and sintered solid ionic conductors. Electroanalytical Chem. Interfacial Electrochem, 1974, v. 53(3), pp. 389. https://doi.org/10.1016/S0022-0728(74)80077-X \nNiftaliev S. I., Kozaderova O. A., Kim K. B., Matchin K. S. Research of current transfer process in the system heterogeneous ion-exchange membrane – ammonium nitrate solution. Condensed Matter and Interphases, 2016, v. 18(2), pp. 232–240. URL: http://www.kcmf.vsu.ru/resources/t_18_2_2016_007.pdf (in Russ.) \nAlvarez R., Guerrero F., Garcia-Belmonte G., Bisquert J. // Materials Sci. 2002, vol. 90, pp. 291. https://doi.org/10.1016/s0921-5107(02)00004-1. \nSolodukha A. M., Lieberman Z. A. Opredelenie dielektricheskikh parametrov keramiki na osnove dispersii kompleksnogo elektricheskogo modulya [Determination of dielectric parameters of ceramics based on the dispersion of a complex electrical module]. Vestnik VSU, Series of Physics, Mathematics, 2003, no. 2, pp. 67–71. URL: http://www.vestnik.vsu.ru/pdf/physmath/2003/02/pitanov.pdf. (in Russ.) \nMoti Ram, Chakrabarti S. Dielectric and modulus behavior of LiFe1/2Ni1/2VO4 ceramics. Phys. Chem. Solids, 2008, v. 69(4), pp. 905–912. https://org.org/10.1016/j.jpcs.2007.10.008 \nPet’Kov V. I., Sukhanov M. V., Shipilov A. S., Kurazhkovskaya V. S., Borovikova E. Y., Pinus I. Y., Yaroslavtsev A. B. Synthesis and properties of LiZr2(AsO4)3 and LiZr2(AsO4) x (PO4)3–x. Mater., 2014, v. 50(3), pp. 263–272. https://doi.org/10.1134/S0020168514030091 \nKrasnov A. G., Piir I. V., Sekushin N. A., Baklanova Y. V., Denisova T. A. Electrophysical properties of bismuth titanates with the pyrochlore structure Bi1.6Mx Ti2O7–d (M = In, Li). Russian Journal of Electrochemistry, 2017, v. 53(8), pp. 866-872. https://doi.org/10.1134/S1023193517080122 \n","PeriodicalId":17879,"journal":{"name":"Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Диэлектрическая релаксация и протонная проводимость полисурьмяной кислоты, допированной ионами ванадия\",\"authors\":\"L. Kovalenko, V. A. Burmistrov\",\"doi\":\"10.17308/kcmf.2019.21/758\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Методом импедансной спектроскопии исследованы протонпроводящие свойства полисурьмяной кислоты (ПСК), допированной ионами ванадия. Для твердых растворов состава H2Sb2–xVxO6·nH2O, кристаллизующихся в структурном типе пирохлора (пр. гр. симм. Fd3m), показано, что увеличение количества ванадия в образце приводит к росту удельной протонной проводимости, которая для крайнего твердого раствора замещения H2Sb1.52V0.48O6·nH2O составляет 66 мСм/м. Из анализа данных диэлектрической спектроскопии при температурах 218–298 К определена энергия активации проводимости, которая составила 30±2 КДж/моль. Предложен механизм протонного транспорта,         согласно которому в допированных ионами ванадия ПСК проводимость осуществляется посистеме водородных связей, образованных молекулами воды, расположенными в гексагональных каналах структуры типа пирохлора, и анионами кислорода октаэдра, формирующего каркас структуры \\n  \\n  \\nREFERENCES \\n \\nStenina I. A., Yaroslavtsev A. B. Low- and intermediate-temperature proton-conducting electrolytes. Mater. 2017. v. 53(3), pp. 253–262. https://doi.org/10.1134/S0020168517030104 \\nIvanchev S. S., Myakin S. V. Polymer membranesfor fuel cells: manufacture, structure, modifi cation, properties. Russian Chemical Reviews, 2010, v. 79(2), pp.101-117. https://doi.org/10.1070/RC2010v079n02ABE H004070 \\nLuo T., Abdu S., Wessling M. Selectivity of ionexchange membranes: A review. Membr. Sci., 2018,v. 555, pp. 429–454. https://doi.org/10.1016/j.memsci.2018.03.051 \\nFomenkov A. I., Pinus Yu., Peregudov A. S., Zubavichus Ya. V., Yaroslavtsev A. B., Khokhlov A. R. Proton conductivity of poly(arylene ether ketones) with different sulfonation degrees: Improvement via incorporation of nanodisperse zirconium acid phosphate. Polymer Science Series B, 2007, v. 49(7–8), pp. 177-181. https://doi.org/10.1134/S1560090407070032 \\nPrikhno I. A., Ivanova K. A., Don G. M., Yaroslavtsev A.B. Hybrid membranes based on short side chain perfl uorinated sulfonic acid membranes (Inion) and heteropoly acid salts. Mendeleev Commun, 2018, v. 28(6), pp. 657–658. https://doi.org/10.1016/j.mencom.2018. 11.033 \\nKlestchov D., Burmistrov V., Sheinkman A., Pletnev R. Composition and structure of phases formed in the process of hydrated antimony pentoxide thermolysis. Journal of Solid State Chemistry, 1991, v. 94(2), pp. 220–226. https://doi.ors/10.1016/0022-4596(91)90186-L \\nYaroshenko F. A., Burmistrov V. A. Dielectric relaxation and protonic conductivity of polyantimonic crystalline acid at low temperatures. Russian Journal of Electrochemistry, 2015, v. 51(5), pp. 391–396. https://doi.org/10.1134/S1023193515050195 \\nYaroshenko F. A., Burmistrov V. A. Proton conductivity of polyantimonic acid studied by impedance spectroscopy in the temperature range 370–480 K. Mater., 2015, v. 51(8), pp. 783–787. https://doi.org/10.1134/S0020168515080208 \\nShchelkanova M. S., Pantyukhina M. I., Antonov B. D., Kalashnova A. V. Produce new solid electrolytes based on the Li 8–x Zr 1–xVxO6 system. Butlerov Communications, 2014, v. 38(5), pp. 96–102. URL: https://butlerov.com/stat/reports/details. asp?lang=ru&id=15798 (in Russ.) \\nKovalenko L. Yu., Burmistrov V. A., Lupitskaya Yu. A., Kovalev I. N., Galimov D. M. Synthesis of the solid solutions H2Sb2–xVxO6·nH2O with the pyrochlore-type structure. Butlerov Communications, 2018, v. 55(8), pp. 24–30. URL: https://butlerov.com/stat/reports/ details.asp?lang=ru&id=30164 (in Russ.) \\nKovalenko L. Yu., Burmistrov V. A., Lupitskaya Yu.A. Vliyanie otnositel’noy vlazhnosti na protonnuyu provodimost’ polisur’myanykh kislot, dopirovannykh ionami vanadiya [Effect of relative humidity on the proton conductivity of poly-antimony acids doped with vanadium ions]. “Physico-chemical processes in condensed media and interphase boundaries” (FAGRAN-2018)”, materials of the 8th All-Russian Conference with international participation, October 8–11, 2018, Voronezh, pp. 524–525. URL: https://elibrary.ru/item. asp?id=36837531. (in Russ.) \\nMalyshkina I. A., Makhaeva E. E., Gavrilova N. D., Khokhlov A. R. Peculiarities of low-frequency dielectric dispersion in polymer networks based on poly(methacrylic acid). Polymer science. Series A, 2000, v. 42(8), pp. 325–328. URL: https://elibrary.ru/item. asp?id=13345750 \\nKleschev D. G. Mekhanizm fazovykh prevrashcheniy pri termolize gidrata pen-taoksida v intervale 470–730 K [The mechanism of phase transformations during thermolysis of pentoxide hydrate in the range of 470–730 K]. News of the Academy of Sciences of the USSR. Inorganic materials, 1987, v. 23(7), pp. 1173 –1176. (in Russ.) \\nArmstrong R. D., Dickinson T., Willis P. M. The A. C. impedance of powdered and sintered solid ionic conductors. Electroanalytical Chem. Interfacial Electrochem, 1974, v. 53(3), pp. 389. https://doi.org/10.1016/S0022-0728(74)80077-X \\nNiftaliev S. I., Kozaderova O. A., Kim K. B., Matchin K. S. Research of current transfer process in the system heterogeneous ion-exchange membrane – ammonium nitrate solution. Condensed Matter and Interphases, 2016, v. 18(2), pp. 232–240. URL: http://www.kcmf.vsu.ru/resources/t_18_2_2016_007.pdf (in Russ.) \\nAlvarez R., Guerrero F., Garcia-Belmonte G., Bisquert J. // Materials Sci. 2002, vol. 90, pp. 291. https://doi.org/10.1016/s0921-5107(02)00004-1. \\nSolodukha A. M., Lieberman Z. A. Opredelenie dielektricheskikh parametrov keramiki na osnove dispersii kompleksnogo elektricheskogo modulya [Determination of dielectric parameters of ceramics based on the dispersion of a complex electrical module]. Vestnik VSU, Series of Physics, Mathematics, 2003, no. 2, pp. 67–71. URL: http://www.vestnik.vsu.ru/pdf/physmath/2003/02/pitanov.pdf. (in Russ.) \\nMoti Ram, Chakrabarti S. Dielectric and modulus behavior of LiFe1/2Ni1/2VO4 ceramics. Phys. Chem. Solids, 2008, v. 69(4), pp. 905–912. https://org.org/10.1016/j.jpcs.2007.10.008 \\nPet’Kov V. I., Sukhanov M. V., Shipilov A. S., Kurazhkovskaya V. S., Borovikova E. Y., Pinus I. Y., Yaroslavtsev A. B. Synthesis and properties of LiZr2(AsO4)3 and LiZr2(AsO4) x (PO4)3–x. Mater., 2014, v. 50(3), pp. 263–272. https://doi.org/10.1134/S0020168514030091 \\nKrasnov A. G., Piir I. V., Sekushin N. A., Baklanova Y. V., Denisova T. A. Electrophysical properties of bismuth titanates with the pyrochlore structure Bi1.6Mx Ti2O7–d (M = In, Li). Russian Journal of Electrochemistry, 2017, v. 53(8), pp. 866-872. https://doi.org/10.1134/S1023193517080122 \\n\",\"PeriodicalId\":17879,\"journal\":{\"name\":\"Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17308/kcmf.2019.21/758\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17308/kcmf.2019.21/758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

阻抗光谱学研究了多糖(psk)多糖酸(psk)的质子导线特性。= =固态溶液= = H2Sb2 - xVxO6·nH2O在结构高温氯(pr)中结晶。预热。西米。Fd3m (Fd3m)表明,样品中瓦纳迪的增加导致质子导电性增加,H2Sb1.52V0.48O6的极端固态替代溶液为66 mcm / m。在218 - 298 k温度下的电介质光谱学分析中,确定了电导率激活能量,为30 kj / mol。有一种质子运输机制,将电导率应用于氢键系统,这种电导率是由六氯型结构结构中的水分子和八角形氧分子组成的,形成了对接型结构的结构框架。2017年的母校。v53 (3), pp, 253 - 262。https://doi.org/10.1134/S0020168517030104 Ivanchev S . S, Myakin S . v . Polymer membranesfor燃油cells: suda,结构,modifi cation(。俄罗斯化学评论,2010年,v79 (2), pp.101-117。https://doi.org/10.1070/RC2010v079n02ABE H004070 Luo T Abdu S。Wessling m Selectivity of ionexchange membranes: A review。Membr。Sci。2018年,v。555 pp 429 - 454特别是Yu https://doi.org/10.1016/j.memsci.2018.03.051 Fomenkov a . I。佩列古多夫A. S. Zubavichus Ya。五、Yaroslavtsev A. B、Khokhlov A. R. production sulfonation (): nanodisperse zirconium合同工公司。Polymer科学系列B, 2007, v49 (7 - 8), pp, 177-181。https://doi.org/10.1134/S1560090407070032 Prikhno一世,Ivanova k A、Don g . M, Yaroslavtsev Hybrid membranes a.b基于on short side chain perfl uorinated sulfonic acid membranes (Inion and heteropoly acid salts)。Mendeleev communn, 2018, v28 (6), pp, 657 - 658。https://doi.org/10.1016/j.mencom.2018。11033 Klestchov D, Burmistrov V, Sheinkman A, Pletnev R. Composition,和形状形状的形状在一个多功能的生物标本thermolysis。1991年,v94 (2), pp, 220 - 226。https://doi.ors/10.1016/0022-4596 (91) 90186 - L Yaroshenko f . A ., Burmistrov v . A . Dielectric relaxation and protonic电化学of polyantimonic crystalline acid at low temperatures。俄罗斯电子杂志,2015年,v51 (5), pp, 391 - 396。https://doi.org/10.1134/S1023193515050195 Yaroshenko f . A ., Burmistrov v . A . Proton电化学of polyantimonic acid studied by impedance spectroscopy in the揽胜370 - 4.8 K温度。母校。2015年,v51 (8), pp, 783 - 787。https://doi.org/10.1134/S0020168515080208 Shchelkanova m S Pantyukhina m I。D。b . Antonov Kalashnova a . v . suaeda torreyana new solid electrolytes基于on the Li 8 - x Zr 1 - xVxO6 system。Butlerov Communications, 2014年,v38 (5), pp, 96 - 102。URL: https://butlerov.com/stat/reports/details。asp ?朗=标准id=15798 (Russ)。Kovalenko L. Yu。伯米斯特罗维V. A。A., Kovalev I. N, Galimov D. M.合成器H2Sb2 - xVxO6。Butlerov通信,2018,v55 (8), pp, 24 - 30。URL: https://butlerov.com/stat/reports/ details.asp ?朗=标准id=30164 (Russ)。Kovalenko L. Yu。伯米斯特罗维V. A.卢平斯卡亚yua。Vliyanie otnosel vlazhnosti na protonnuyu na protonnuykh vanadiya, propirovannami vanadiya。“立体声媒体和跨境材料”(FAGRAN-2018),俄罗斯国际委员会第八届全俄罗斯实业家,10月8日- 11日,2018年,Voronezh, 524 - 525。URL: https://elibrary.ru/item。asp ? id = 36837531。(in Russ。)malyshina I. A., Makhaeva E, Gavrilova N. D, Khokhlov A. R.在polymer网络上的低水平分裂。Polymer science。系列A, 2000, v42 (8), pp, 325 - 328。URL: https://elibrary.ru/item。asp ?id=13345750 klezev D. G. mezovykh pre -taoksida 470 - 730。这是美国科学学院的新闻。组织物质,1987年,v23 (7), pp, 1173 - 1176。(in Russ。)Armstrong R. D, Dickinson T, Willis P. M. a。Electroanalytical化学赞。接口电子,1974年,v53 (3), pp, 389。https://doi.org/10.1016/S0022-0728 (74) 80077 - X I, Kozaderova Niftaliev s . o . A ., Kim k B Matchin k . s . Research of感应传输process in the system heterogeneous ion exchange membrane——硝酸盐ammonium solution。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Диэлектрическая релаксация и протонная проводимость полисурьмяной кислоты, допированной ионами ванадия
Методом импедансной спектроскопии исследованы протонпроводящие свойства полисурьмяной кислоты (ПСК), допированной ионами ванадия. Для твердых растворов состава H2Sb2–xVxO6·nH2O, кристаллизующихся в структурном типе пирохлора (пр. гр. симм. Fd3m), показано, что увеличение количества ванадия в образце приводит к росту удельной протонной проводимости, которая для крайнего твердого раствора замещения H2Sb1.52V0.48O6·nH2O составляет 66 мСм/м. Из анализа данных диэлектрической спектроскопии при температурах 218–298 К определена энергия активации проводимости, которая составила 30±2 КДж/моль. Предложен механизм протонного транспорта,         согласно которому в допированных ионами ванадия ПСК проводимость осуществляется посистеме водородных связей, образованных молекулами воды, расположенными в гексагональных каналах структуры типа пирохлора, и анионами кислорода октаэдра, формирующего каркас структуры     REFERENCES Stenina I. A., Yaroslavtsev A. B. Low- and intermediate-temperature proton-conducting electrolytes. Mater. 2017. v. 53(3), pp. 253–262. https://doi.org/10.1134/S0020168517030104 Ivanchev S. S., Myakin S. V. Polymer membranesfor fuel cells: manufacture, structure, modifi cation, properties. Russian Chemical Reviews, 2010, v. 79(2), pp.101-117. https://doi.org/10.1070/RC2010v079n02ABE H004070 Luo T., Abdu S., Wessling M. Selectivity of ionexchange membranes: A review. Membr. Sci., 2018,v. 555, pp. 429–454. https://doi.org/10.1016/j.memsci.2018.03.051 Fomenkov A. I., Pinus Yu., Peregudov A. S., Zubavichus Ya. V., Yaroslavtsev A. B., Khokhlov A. R. Proton conductivity of poly(arylene ether ketones) with different sulfonation degrees: Improvement via incorporation of nanodisperse zirconium acid phosphate. Polymer Science Series B, 2007, v. 49(7–8), pp. 177-181. https://doi.org/10.1134/S1560090407070032 Prikhno I. A., Ivanova K. A., Don G. M., Yaroslavtsev A.B. Hybrid membranes based on short side chain perfl uorinated sulfonic acid membranes (Inion) and heteropoly acid salts. Mendeleev Commun, 2018, v. 28(6), pp. 657–658. https://doi.org/10.1016/j.mencom.2018. 11.033 Klestchov D., Burmistrov V., Sheinkman A., Pletnev R. Composition and structure of phases formed in the process of hydrated antimony pentoxide thermolysis. Journal of Solid State Chemistry, 1991, v. 94(2), pp. 220–226. https://doi.ors/10.1016/0022-4596(91)90186-L Yaroshenko F. A., Burmistrov V. A. Dielectric relaxation and protonic conductivity of polyantimonic crystalline acid at low temperatures. Russian Journal of Electrochemistry, 2015, v. 51(5), pp. 391–396. https://doi.org/10.1134/S1023193515050195 Yaroshenko F. A., Burmistrov V. A. Proton conductivity of polyantimonic acid studied by impedance spectroscopy in the temperature range 370–480 K. Mater., 2015, v. 51(8), pp. 783–787. https://doi.org/10.1134/S0020168515080208 Shchelkanova M. S., Pantyukhina M. I., Antonov B. D., Kalashnova A. V. Produce new solid electrolytes based on the Li 8–x Zr 1–xVxO6 system. Butlerov Communications, 2014, v. 38(5), pp. 96–102. URL: https://butlerov.com/stat/reports/details. asp?lang=ru&id=15798 (in Russ.) Kovalenko L. Yu., Burmistrov V. A., Lupitskaya Yu. A., Kovalev I. N., Galimov D. M. Synthesis of the solid solutions H2Sb2–xVxO6·nH2O with the pyrochlore-type structure. Butlerov Communications, 2018, v. 55(8), pp. 24–30. URL: https://butlerov.com/stat/reports/ details.asp?lang=ru&id=30164 (in Russ.) Kovalenko L. Yu., Burmistrov V. A., Lupitskaya Yu.A. Vliyanie otnositel’noy vlazhnosti na protonnuyu provodimost’ polisur’myanykh kislot, dopirovannykh ionami vanadiya [Effect of relative humidity on the proton conductivity of poly-antimony acids doped with vanadium ions]. “Physico-chemical processes in condensed media and interphase boundaries” (FAGRAN-2018)”, materials of the 8th All-Russian Conference with international participation, October 8–11, 2018, Voronezh, pp. 524–525. URL: https://elibrary.ru/item. asp?id=36837531. (in Russ.) Malyshkina I. A., Makhaeva E. E., Gavrilova N. D., Khokhlov A. R. Peculiarities of low-frequency dielectric dispersion in polymer networks based on poly(methacrylic acid). Polymer science. Series A, 2000, v. 42(8), pp. 325–328. URL: https://elibrary.ru/item. asp?id=13345750 Kleschev D. G. Mekhanizm fazovykh prevrashcheniy pri termolize gidrata pen-taoksida v intervale 470–730 K [The mechanism of phase transformations during thermolysis of pentoxide hydrate in the range of 470–730 K]. News of the Academy of Sciences of the USSR. Inorganic materials, 1987, v. 23(7), pp. 1173 –1176. (in Russ.) Armstrong R. D., Dickinson T., Willis P. M. The A. C. impedance of powdered and sintered solid ionic conductors. Electroanalytical Chem. Interfacial Electrochem, 1974, v. 53(3), pp. 389. https://doi.org/10.1016/S0022-0728(74)80077-X Niftaliev S. I., Kozaderova O. A., Kim K. B., Matchin K. S. Research of current transfer process in the system heterogeneous ion-exchange membrane – ammonium nitrate solution. Condensed Matter and Interphases, 2016, v. 18(2), pp. 232–240. URL: http://www.kcmf.vsu.ru/resources/t_18_2_2016_007.pdf (in Russ.) Alvarez R., Guerrero F., Garcia-Belmonte G., Bisquert J. // Materials Sci. 2002, vol. 90, pp. 291. https://doi.org/10.1016/s0921-5107(02)00004-1. Solodukha A. M., Lieberman Z. A. Opredelenie dielektricheskikh parametrov keramiki na osnove dispersii kompleksnogo elektricheskogo modulya [Determination of dielectric parameters of ceramics based on the dispersion of a complex electrical module]. Vestnik VSU, Series of Physics, Mathematics, 2003, no. 2, pp. 67–71. URL: http://www.vestnik.vsu.ru/pdf/physmath/2003/02/pitanov.pdf. (in Russ.) Moti Ram, Chakrabarti S. Dielectric and modulus behavior of LiFe1/2Ni1/2VO4 ceramics. Phys. Chem. Solids, 2008, v. 69(4), pp. 905–912. https://org.org/10.1016/j.jpcs.2007.10.008 Pet’Kov V. I., Sukhanov M. V., Shipilov A. S., Kurazhkovskaya V. S., Borovikova E. Y., Pinus I. Y., Yaroslavtsev A. B. Synthesis and properties of LiZr2(AsO4)3 and LiZr2(AsO4) x (PO4)3–x. Mater., 2014, v. 50(3), pp. 263–272. https://doi.org/10.1134/S0020168514030091 Krasnov A. G., Piir I. V., Sekushin N. A., Baklanova Y. V., Denisova T. A. Electrophysical properties of bismuth titanates with the pyrochlore structure Bi1.6Mx Ti2O7–d (M = In, Li). Russian Journal of Electrochemistry, 2017, v. 53(8), pp. 866-872. https://doi.org/10.1134/S1023193517080122
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信