{"title":"单层玄武岩纤维增强聚合物板外加固RC梁的抗弯性能","authors":"Sarah Kadhim, M. Özakça","doi":"10.1177/26349833221102471","DOIUrl":null,"url":null,"abstract":"Basalt Fiber Reinforced Polymer (BFRP) is an environment friendly strengthening material that can be used in several engineering applications. In this research, an experimental program was directed to investigate the BFRP strengthening adequacy of reinforced concrete beams. Eight simple-span beams were tested under the four-point bending test and were all made from the same concrete mixture. One layer of BFRP was applied on the soffit of B1, while this layer was wrapped partially along the sides of beams B2, B3, and B4 with vertical side extensions of 25, 75, and 105 mm, respectively, to evaluate the effect of vertical extension of the bottom BFRP layer on the flexural behavior of the strengthened beams. The beams B5 and B6 were strengthened with three BFRP U-strips along the flexural span without and with a bottom layer of BFRP sheet, respectively. On the other hand, the bottom and side surfaces of B7 were fully wrapped with a layer of BFRP, while B0 was kept without strengthening as a reference beam. The test results showed that strengthening with BFRP can noticeably improve the beam load capacity at cracking, yield, and ultimate stages. The ductility of strengthened beams was less than B0 by up to 33% for partial side strengthening and 45% for full side strengthening, while the toughness of all strengthened beams was higher than that of reference beam by 8–78%. The results also showed that increasing the vertical side extension of the bottom BFRP layer leads to significant load capacity increase.","PeriodicalId":10608,"journal":{"name":"Composites and Advanced Materials","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Flexural performance of RC beams externally strengthened with a single-layer of basalt fiber reinforced polymer sheets\",\"authors\":\"Sarah Kadhim, M. Özakça\",\"doi\":\"10.1177/26349833221102471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Basalt Fiber Reinforced Polymer (BFRP) is an environment friendly strengthening material that can be used in several engineering applications. In this research, an experimental program was directed to investigate the BFRP strengthening adequacy of reinforced concrete beams. Eight simple-span beams were tested under the four-point bending test and were all made from the same concrete mixture. One layer of BFRP was applied on the soffit of B1, while this layer was wrapped partially along the sides of beams B2, B3, and B4 with vertical side extensions of 25, 75, and 105 mm, respectively, to evaluate the effect of vertical extension of the bottom BFRP layer on the flexural behavior of the strengthened beams. The beams B5 and B6 were strengthened with three BFRP U-strips along the flexural span without and with a bottom layer of BFRP sheet, respectively. On the other hand, the bottom and side surfaces of B7 were fully wrapped with a layer of BFRP, while B0 was kept without strengthening as a reference beam. The test results showed that strengthening with BFRP can noticeably improve the beam load capacity at cracking, yield, and ultimate stages. The ductility of strengthened beams was less than B0 by up to 33% for partial side strengthening and 45% for full side strengthening, while the toughness of all strengthened beams was higher than that of reference beam by 8–78%. The results also showed that increasing the vertical side extension of the bottom BFRP layer leads to significant load capacity increase.\",\"PeriodicalId\":10608,\"journal\":{\"name\":\"Composites and Advanced Materials\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites and Advanced Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/26349833221102471\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites and Advanced Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/26349833221102471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Flexural performance of RC beams externally strengthened with a single-layer of basalt fiber reinforced polymer sheets
Basalt Fiber Reinforced Polymer (BFRP) is an environment friendly strengthening material that can be used in several engineering applications. In this research, an experimental program was directed to investigate the BFRP strengthening adequacy of reinforced concrete beams. Eight simple-span beams were tested under the four-point bending test and were all made from the same concrete mixture. One layer of BFRP was applied on the soffit of B1, while this layer was wrapped partially along the sides of beams B2, B3, and B4 with vertical side extensions of 25, 75, and 105 mm, respectively, to evaluate the effect of vertical extension of the bottom BFRP layer on the flexural behavior of the strengthened beams. The beams B5 and B6 were strengthened with three BFRP U-strips along the flexural span without and with a bottom layer of BFRP sheet, respectively. On the other hand, the bottom and side surfaces of B7 were fully wrapped with a layer of BFRP, while B0 was kept without strengthening as a reference beam. The test results showed that strengthening with BFRP can noticeably improve the beam load capacity at cracking, yield, and ultimate stages. The ductility of strengthened beams was less than B0 by up to 33% for partial side strengthening and 45% for full side strengthening, while the toughness of all strengthened beams was higher than that of reference beam by 8–78%. The results also showed that increasing the vertical side extension of the bottom BFRP layer leads to significant load capacity increase.