使用配备gps的探测车辆的流旅行时间可靠性

IF 1.1 4区 综合性期刊 Q3 MULTIDISCIPLINARY SCIENCES
Sharmili Banik, B. A. Kumar, L. Vanajakshi
{"title":"使用配备gps的探测车辆的流旅行时间可靠性","authors":"Sharmili Banik, B. A. Kumar, L. Vanajakshi","doi":"10.18520/cs/v123/i9/1107-1116","DOIUrl":null,"url":null,"abstract":"Travel time reliability (TTR) is an important measure to quantify the variation in travel times. Currently, there is no single reliability metric appropriate across all locations, that is easily understandable and can be used to compare across facilities. Moreover, reliability analysis of facilities from developing countries is limited due to the non-availability of extensive data required for such an analysis. The present study addresses these gaps. It identifies a reliable data source for such analysis of heterogeneous, lane-less traffic, compares existing reliability measures for the data, highlights the advantages and disadvantages, proposes a measure that may be more suitable for such traffic with high variability, and finally illustrates how reliability analysis under such conditions can be done with limited data sources such as GPS-fitted transit vehicles. Using such commonly available data for traffic stream reliability analysis is the ultimate aim of this study. For valida-tion, stream travel time from Wi-Fi scanners is used. The study analyses the performance of various reliability measures and identifies the most suitable ones. Following this, a reliability measure, i.e. capacity buffer index (CBI), is developed to identify the unreliable congested regimes or periods, keeping time taken to travel at capacity conditions as the benchmark. From the results, it has been observed that CBI is in agreement with the real-field conditions in 94% of the cases, whereas it is 75% buffer time index. Finally, the feasibility of using bus probes to measure stream TTR is checked. Results show that bus probes can be an indicator of stream reliability and the developed measure can effectively capture the relationship between stream and bus TTR.","PeriodicalId":11194,"journal":{"name":"Current Science","volume":"25 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Stream travel time reliability using GPS-equipped probe vehicles\",\"authors\":\"Sharmili Banik, B. A. Kumar, L. Vanajakshi\",\"doi\":\"10.18520/cs/v123/i9/1107-1116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Travel time reliability (TTR) is an important measure to quantify the variation in travel times. Currently, there is no single reliability metric appropriate across all locations, that is easily understandable and can be used to compare across facilities. Moreover, reliability analysis of facilities from developing countries is limited due to the non-availability of extensive data required for such an analysis. The present study addresses these gaps. It identifies a reliable data source for such analysis of heterogeneous, lane-less traffic, compares existing reliability measures for the data, highlights the advantages and disadvantages, proposes a measure that may be more suitable for such traffic with high variability, and finally illustrates how reliability analysis under such conditions can be done with limited data sources such as GPS-fitted transit vehicles. Using such commonly available data for traffic stream reliability analysis is the ultimate aim of this study. For valida-tion, stream travel time from Wi-Fi scanners is used. The study analyses the performance of various reliability measures and identifies the most suitable ones. Following this, a reliability measure, i.e. capacity buffer index (CBI), is developed to identify the unreliable congested regimes or periods, keeping time taken to travel at capacity conditions as the benchmark. From the results, it has been observed that CBI is in agreement with the real-field conditions in 94% of the cases, whereas it is 75% buffer time index. Finally, the feasibility of using bus probes to measure stream TTR is checked. Results show that bus probes can be an indicator of stream reliability and the developed measure can effectively capture the relationship between stream and bus TTR.\",\"PeriodicalId\":11194,\"journal\":{\"name\":\"Current Science\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.18520/cs/v123/i9/1107-1116\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.18520/cs/v123/i9/1107-1116","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 1

摘要

行车时间可靠性(TTR)是量化行车时间变化的重要指标。目前,没有一个单一的可靠性指标适用于所有地点,这是容易理解的,可以用来比较不同设施。此外,对发展中国家设施的可靠性分析是有限的,因为没有这种分析所需的广泛数据。本研究解决了这些差距。本文为异构、无车道交通的分析确定了一个可靠的数据源,比较了现有的数据可靠性度量,突出了优点和缺点,提出了一个可能更适合这种高可变性交通的度量,最后说明了如何在这种条件下使用有限的数据源(如安装了gps的交通车辆)进行可靠性分析。利用这些常用数据进行交通流可靠性分析是本研究的最终目的。为了验证,使用来自Wi-Fi扫描仪的流传输时间。研究分析了各种可靠性措施的性能,并确定了最合适的可靠性措施。在此之后,开发了一种可靠性度量,即容量缓冲指数(CBI),以确定不可靠的拥堵状态或时段,并将在容量条件下行驶所需的时间作为基准。从结果中可以看出,CBI在94%的情况下符合实际情况,而缓冲时间指数为75%。最后,验证了利用总线探头测量流TTR的可行性。结果表明,总线探头可以作为流可靠性的一个指标,所开发的方法可以有效地捕捉流和总线TTR之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stream travel time reliability using GPS-equipped probe vehicles
Travel time reliability (TTR) is an important measure to quantify the variation in travel times. Currently, there is no single reliability metric appropriate across all locations, that is easily understandable and can be used to compare across facilities. Moreover, reliability analysis of facilities from developing countries is limited due to the non-availability of extensive data required for such an analysis. The present study addresses these gaps. It identifies a reliable data source for such analysis of heterogeneous, lane-less traffic, compares existing reliability measures for the data, highlights the advantages and disadvantages, proposes a measure that may be more suitable for such traffic with high variability, and finally illustrates how reliability analysis under such conditions can be done with limited data sources such as GPS-fitted transit vehicles. Using such commonly available data for traffic stream reliability analysis is the ultimate aim of this study. For valida-tion, stream travel time from Wi-Fi scanners is used. The study analyses the performance of various reliability measures and identifies the most suitable ones. Following this, a reliability measure, i.e. capacity buffer index (CBI), is developed to identify the unreliable congested regimes or periods, keeping time taken to travel at capacity conditions as the benchmark. From the results, it has been observed that CBI is in agreement with the real-field conditions in 94% of the cases, whereas it is 75% buffer time index. Finally, the feasibility of using bus probes to measure stream TTR is checked. Results show that bus probes can be an indicator of stream reliability and the developed measure can effectively capture the relationship between stream and bus TTR.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Science
Current Science 综合性期刊-综合性期刊
CiteScore
1.50
自引率
10.00%
发文量
97
审稿时长
3 months
期刊介绍: Current Science, published every fortnight by the Association, in collaboration with the Indian Academy of Sciences, is the leading interdisciplinary science journal from India. It was started in 1932 by the then stalwarts of Indian science such as CV Raman, Birbal Sahni, Meghnad Saha, Martin Foster and S.S. Bhatnagar. In 2011, the journal completed one hundred volumes. The journal is intended as a medium for communication and discussion of important issues that concern science and scientific activities. Besides full length research articles and shorter research communications, the journal publishes review articles, scientific correspondence and commentaries, news and views, comments on recently published research papers, opinions on scientific activity, articles on universities, Indian laboratories and institutions, interviews with scientists, personal information, book reviews, etc. It is also a forum to discuss issues and problems faced by science and scientists and an effective medium of interaction among scientists in the country and abroad. Current Science is read by a large community of scientists and the circulation has been continuously going up. Current Science publishes special sections on diverse and topical themes of interest and this has served as a platform for the scientific fraternity to get their work acknowledged and highlighted. Some of the special sections that have been well received in the recent past include remote sensing, waves and symmetry, seismology in India, nanomaterials, AIDS, Alzheimer''s disease, molecular biology of ageing, cancer, cardiovascular diseases, Indian monsoon, water, transport, and mountain weather forecasting in India, to name a few. Contributions to these special issues ‘which receive widespread attention’ are from leading scientists in India and abroad.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信