{"title":"聚氨酯:最近的工程贡献","authors":"D. Feldman","doi":"10.19080/ajop.2020.03.555618","DOIUrl":null,"url":null,"abstract":"Polyurethane is one of the most versatile polymers which stands out with a wide range of tunable properties such as chemical stability, flexibility, abrasion and scratch resistance, toughness and biodegradability. It is a unique polymer containing alternating soft and hard segments. This review covers the most recent (2018-2019) engineering research contributions done for the synthesis, properties and applications of the polyurethane foams, coatings, adhesives, sealants, elastomers, composites and insists on the important aspects and realizations related to the polyurethane flammability and acoustic. 2,2,3,3,4,: heptafluoro-butiric acid 2,2-bis-hydroxymethyl-butyl ester; HRR: Heat release rate; HPU: Hyper Branched Polyurethane; LMPET: Low Melting Polyester; LOI: Limited Oxygen Index; MW: Molecular Weight; PEG: Poly(ethylene glycol); PHRR: Peak Heat Release Rate; PPG: Poly (propylene glycol); POSS Polyhedral Oligomeric Silsequioxanes; PU: Polyurethane; PU FR: Polyurethane with FR; RO: Rape seed oil; SEM: Scanning Electron Microscopy; SPB: Soybean Oil Based Polyol; TEM: Transmission Electron microscopy; TGA: Thermo gravimetry analysis; THRR: Total heat release rate; THR: Total heat release; TPIA: Acylhydrazine; TPID: Disulfide bonds; TPU: Thermoplastic polyurethane; VOCs: Volatile organic compounds New biobased PU coatings with lignin were studied. A diisocyanate obtained from lignin-derived vanilic acid and crosslinked with three different nonchemically modified technical lignins namely mild acetone organosolv, kraft, and soda. The results of the research showed that the reaction of a lignin-derived biobased diisocyanate represent an interesting way for the production of TPU coating. The study also showed that the reaction of lignin-derived biobased diisocyanate","PeriodicalId":6991,"journal":{"name":"Academic Journal of Polymer Science","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polyurethane: Recent Engineering Contributions\",\"authors\":\"D. Feldman\",\"doi\":\"10.19080/ajop.2020.03.555618\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Polyurethane is one of the most versatile polymers which stands out with a wide range of tunable properties such as chemical stability, flexibility, abrasion and scratch resistance, toughness and biodegradability. It is a unique polymer containing alternating soft and hard segments. This review covers the most recent (2018-2019) engineering research contributions done for the synthesis, properties and applications of the polyurethane foams, coatings, adhesives, sealants, elastomers, composites and insists on the important aspects and realizations related to the polyurethane flammability and acoustic. 2,2,3,3,4,: heptafluoro-butiric acid 2,2-bis-hydroxymethyl-butyl ester; HRR: Heat release rate; HPU: Hyper Branched Polyurethane; LMPET: Low Melting Polyester; LOI: Limited Oxygen Index; MW: Molecular Weight; PEG: Poly(ethylene glycol); PHRR: Peak Heat Release Rate; PPG: Poly (propylene glycol); POSS Polyhedral Oligomeric Silsequioxanes; PU: Polyurethane; PU FR: Polyurethane with FR; RO: Rape seed oil; SEM: Scanning Electron Microscopy; SPB: Soybean Oil Based Polyol; TEM: Transmission Electron microscopy; TGA: Thermo gravimetry analysis; THRR: Total heat release rate; THR: Total heat release; TPIA: Acylhydrazine; TPID: Disulfide bonds; TPU: Thermoplastic polyurethane; VOCs: Volatile organic compounds New biobased PU coatings with lignin were studied. A diisocyanate obtained from lignin-derived vanilic acid and crosslinked with three different nonchemically modified technical lignins namely mild acetone organosolv, kraft, and soda. The results of the research showed that the reaction of a lignin-derived biobased diisocyanate represent an interesting way for the production of TPU coating. The study also showed that the reaction of lignin-derived biobased diisocyanate\",\"PeriodicalId\":6991,\"journal\":{\"name\":\"Academic Journal of Polymer Science\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Academic Journal of Polymer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.19080/ajop.2020.03.555618\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Academic Journal of Polymer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19080/ajop.2020.03.555618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Polyurethane is one of the most versatile polymers which stands out with a wide range of tunable properties such as chemical stability, flexibility, abrasion and scratch resistance, toughness and biodegradability. It is a unique polymer containing alternating soft and hard segments. This review covers the most recent (2018-2019) engineering research contributions done for the synthesis, properties and applications of the polyurethane foams, coatings, adhesives, sealants, elastomers, composites and insists on the important aspects and realizations related to the polyurethane flammability and acoustic. 2,2,3,3,4,: heptafluoro-butiric acid 2,2-bis-hydroxymethyl-butyl ester; HRR: Heat release rate; HPU: Hyper Branched Polyurethane; LMPET: Low Melting Polyester; LOI: Limited Oxygen Index; MW: Molecular Weight; PEG: Poly(ethylene glycol); PHRR: Peak Heat Release Rate; PPG: Poly (propylene glycol); POSS Polyhedral Oligomeric Silsequioxanes; PU: Polyurethane; PU FR: Polyurethane with FR; RO: Rape seed oil; SEM: Scanning Electron Microscopy; SPB: Soybean Oil Based Polyol; TEM: Transmission Electron microscopy; TGA: Thermo gravimetry analysis; THRR: Total heat release rate; THR: Total heat release; TPIA: Acylhydrazine; TPID: Disulfide bonds; TPU: Thermoplastic polyurethane; VOCs: Volatile organic compounds New biobased PU coatings with lignin were studied. A diisocyanate obtained from lignin-derived vanilic acid and crosslinked with three different nonchemically modified technical lignins namely mild acetone organosolv, kraft, and soda. The results of the research showed that the reaction of a lignin-derived biobased diisocyanate represent an interesting way for the production of TPU coating. The study also showed that the reaction of lignin-derived biobased diisocyanate