记忆梯度扩散的长时间行为和平稳状态

IF 1.2 2区 数学 Q2 STATISTICS & PROBABILITY
S. Gadat, Fabien Panloup
{"title":"记忆梯度扩散的长时间行为和平稳状态","authors":"S. Gadat, Fabien Panloup","doi":"10.1214/12-AIHP536","DOIUrl":null,"url":null,"abstract":"In this paper, we are interested in a diffusion process based on a gradient descent. The process is non Markov and has a memory term which is built as a weighted average of the drift term all along the past of the trajectory. For this type of diffusion, we study the long time behaviour of the process in terms of the memory. We exhibit some conditions for the long-time stability of the dynamical system and then provide, when stable, some convergence properties of the occupation measures and of the marginal distribution, to the associated steady regimes. When the memory is too long, we show that in general, the dynamical system has a tendency to explode, and in the particular Gaussian case, we explicitly obtain the rate of divergence.","PeriodicalId":7902,"journal":{"name":"Annales De L Institut Henri Poincare-probabilites Et Statistiques","volume":"2016 1","pages":"564-601"},"PeriodicalIF":1.2000,"publicationDate":"2014-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Long time behaviour and stationary regime of memory gradient diffusions\",\"authors\":\"S. Gadat, Fabien Panloup\",\"doi\":\"10.1214/12-AIHP536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we are interested in a diffusion process based on a gradient descent. The process is non Markov and has a memory term which is built as a weighted average of the drift term all along the past of the trajectory. For this type of diffusion, we study the long time behaviour of the process in terms of the memory. We exhibit some conditions for the long-time stability of the dynamical system and then provide, when stable, some convergence properties of the occupation measures and of the marginal distribution, to the associated steady regimes. When the memory is too long, we show that in general, the dynamical system has a tendency to explode, and in the particular Gaussian case, we explicitly obtain the rate of divergence.\",\"PeriodicalId\":7902,\"journal\":{\"name\":\"Annales De L Institut Henri Poincare-probabilites Et Statistiques\",\"volume\":\"2016 1\",\"pages\":\"564-601\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2014-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales De L Institut Henri Poincare-probabilites Et Statistiques\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/12-AIHP536\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De L Institut Henri Poincare-probabilites Et Statistiques","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/12-AIHP536","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 21

摘要

在本文中,我们感兴趣的是一个基于梯度下降的扩散过程。这个过程是非马尔可夫的,并且有一个记忆项,这个记忆项是沿着过去轨迹的漂移项的加权平均值。对于这种类型的扩散,我们从记忆的角度研究过程的长时间行为。我们给出了动力系统长期稳定的一些条件,并在稳定时给出了相关稳定状态的占用测度和边际分布的一些收敛性质。当记忆太长时,我们表明,一般情况下,动力系统有爆炸的倾向,并且在特殊的高斯情况下,我们显式地获得了散度率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Long time behaviour and stationary regime of memory gradient diffusions
In this paper, we are interested in a diffusion process based on a gradient descent. The process is non Markov and has a memory term which is built as a weighted average of the drift term all along the past of the trajectory. For this type of diffusion, we study the long time behaviour of the process in terms of the memory. We exhibit some conditions for the long-time stability of the dynamical system and then provide, when stable, some convergence properties of the occupation measures and of the marginal distribution, to the associated steady regimes. When the memory is too long, we show that in general, the dynamical system has a tendency to explode, and in the particular Gaussian case, we explicitly obtain the rate of divergence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
85
审稿时长
6-12 weeks
期刊介绍: The Probability and Statistics section of the Annales de l’Institut Henri Poincaré is an international journal which publishes high quality research papers. The journal deals with all aspects of modern probability theory and mathematical statistics, as well as with their applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信