并行遗传算法中种群多样性的理论研究

Mei-Qin Pan, Guo-ping He
{"title":"并行遗传算法中种群多样性的理论研究","authors":"Mei-Qin Pan, Guo-ping He","doi":"10.1109/ICMLC.2002.1176799","DOIUrl":null,"url":null,"abstract":"In this paper, conditional probability density and marginal distribution are proposed as measures of population in genetic algorithms. The influence of selection, crossover and mutation on population distribution is analyzed. In addition, the recursive equations governing population density are derived, and a conclusion of global convergence is also shown.","PeriodicalId":90702,"journal":{"name":"Proceedings. International Conference on Machine Learning and Cybernetics","volume":"2014 1","pages":"472-475 vol.1"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theoretical study on diversity of population in parallel genetic algorithms\",\"authors\":\"Mei-Qin Pan, Guo-ping He\",\"doi\":\"10.1109/ICMLC.2002.1176799\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, conditional probability density and marginal distribution are proposed as measures of population in genetic algorithms. The influence of selection, crossover and mutation on population distribution is analyzed. In addition, the recursive equations governing population density are derived, and a conclusion of global convergence is also shown.\",\"PeriodicalId\":90702,\"journal\":{\"name\":\"Proceedings. International Conference on Machine Learning and Cybernetics\",\"volume\":\"2014 1\",\"pages\":\"472-475 vol.1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. International Conference on Machine Learning and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLC.2002.1176799\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Conference on Machine Learning and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2002.1176799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了条件概率密度和边际分布作为遗传算法中种群的度量。分析了选择、杂交和突变对种群分布的影响。此外,导出了控制人口密度的递推方程,并给出了全局收敛的结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Theoretical study on diversity of population in parallel genetic algorithms
In this paper, conditional probability density and marginal distribution are proposed as measures of population in genetic algorithms. The influence of selection, crossover and mutation on population distribution is analyzed. In addition, the recursive equations governing population density are derived, and a conclusion of global convergence is also shown.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信