基于CNN的一般非线性函数神经网络拟合算法

Xintao Xu, Zhelong Jiang, Gang Chen, Zhigang Li, Guoliang Gong, Huaxiang Lu
{"title":"基于CNN的一般非线性函数神经网络拟合算法","authors":"Xintao Xu, Zhelong Jiang, Gang Chen, Zhigang Li, Guoliang Gong, Huaxiang Lu","doi":"10.1109/cvidliccea56201.2022.9824846","DOIUrl":null,"url":null,"abstract":"This paper proposes a generic neural network fitting algorithm based on CNN for nonlinear functions that overcomes the challenges of a large number of nonlinear functions in terms of hardware deployment and computing circuit generality in diverse neural network models. The model takes advantage of the principle that functions have varying degrees of difficulty fitting in different spaces, mapping the input to high-dimensional space with 1x1 convolution, and utilizing CNN to extract features of nonlinear functions with its strong feature extraction ability in high-dimensional space. Furthermore, MaxPool and ReLU improve the ability of nonlinear fitting. When fitting Tanh, Sigmoid, and ELU activation functions with 16bit accuracy, the proposed algorithm has an average error of less than 0.0006, with a parameter size of 5.793 k.","PeriodicalId":23649,"journal":{"name":"Vision","volume":"65 1","pages":"1079-1082"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"General nonlinear function neural network fitting algorithm based on CNN\",\"authors\":\"Xintao Xu, Zhelong Jiang, Gang Chen, Zhigang Li, Guoliang Gong, Huaxiang Lu\",\"doi\":\"10.1109/cvidliccea56201.2022.9824846\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a generic neural network fitting algorithm based on CNN for nonlinear functions that overcomes the challenges of a large number of nonlinear functions in terms of hardware deployment and computing circuit generality in diverse neural network models. The model takes advantage of the principle that functions have varying degrees of difficulty fitting in different spaces, mapping the input to high-dimensional space with 1x1 convolution, and utilizing CNN to extract features of nonlinear functions with its strong feature extraction ability in high-dimensional space. Furthermore, MaxPool and ReLU improve the ability of nonlinear fitting. When fitting Tanh, Sigmoid, and ELU activation functions with 16bit accuracy, the proposed algorithm has an average error of less than 0.0006, with a parameter size of 5.793 k.\",\"PeriodicalId\":23649,\"journal\":{\"name\":\"Vision\",\"volume\":\"65 1\",\"pages\":\"1079-1082\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/cvidliccea56201.2022.9824846\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/cvidliccea56201.2022.9824846","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于CNN的非线性函数通用神经网络拟合算法,克服了大量非线性函数在不同神经网络模型中硬件部署和计算电路通用性方面的挑战。该模型利用函数在不同空间拟合困难程度不同的原理,用1x1卷积将输入映射到高维空间,利用CNN在高维空间中较强的特征提取能力提取非线性函数的特征。此外,MaxPool和ReLU提高了非线性拟合的能力。在以16位精度拟合Tanh、Sigmoid和ELU激活函数时,算法的平均误差小于0.0006,参数大小为5.793 k。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
General nonlinear function neural network fitting algorithm based on CNN
This paper proposes a generic neural network fitting algorithm based on CNN for nonlinear functions that overcomes the challenges of a large number of nonlinear functions in terms of hardware deployment and computing circuit generality in diverse neural network models. The model takes advantage of the principle that functions have varying degrees of difficulty fitting in different spaces, mapping the input to high-dimensional space with 1x1 convolution, and utilizing CNN to extract features of nonlinear functions with its strong feature extraction ability in high-dimensional space. Furthermore, MaxPool and ReLU improve the ability of nonlinear fitting. When fitting Tanh, Sigmoid, and ELU activation functions with 16bit accuracy, the proposed algorithm has an average error of less than 0.0006, with a parameter size of 5.793 k.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信