用于住房和公共服务供热的自主主动太阳能系统

IF 0.3 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
P. Khavanov
{"title":"用于住房和公共服务供热的自主主动太阳能系统","authors":"P. Khavanov","doi":"10.33383/2021-079","DOIUrl":null,"url":null,"abstract":"Energy saving in small-scale heat power engineering is directed to increasing the efficiency of using fossil energy carriers, electric power, and their wider replacement with alternative sources in housing and communal complex. The practical use of active solar energy systems, both photovoltaic and with direct water heating, has found widespread use. At the same time, the specificities of these systems deployment are caused by climatic and technical conditions of their application. For countries found in climatic zones with temperate and cold climate, water heating installations design is most rational when used seasonally. Low coolant potential, heat supply frequency in active solar energy systems, linked to seasonality of their operation, daytime and weather require several technical solutions. For example, solutions with the use of other equipment in form of thermal energy accumulators, heat pumps and other equipment, which in any case must be combined with a traditional source of thermal energy using fossil fuels or electric power, performing the functions of both other and emergency source of heat energy. Capacity reserving of alternative energy sources is most efficient and least energy-consuming when conducting with heat sources using gaseous or degasified fuel. The use of electric power for heat supply purpose, with few capital investments, requires from a developer significant installed capacities of heat source with a low efficiency for primary fuel. In the article one considers thermal schemes of autonomous heat supply installations for objects using modern condensing boilers of low power and along them various heat cumulating devices, supplying full year operation of equipment at heat supply facilities to get the highest efficiency of energy use.","PeriodicalId":49907,"journal":{"name":"Light & Engineering","volume":"3 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Autonomous Active Solar Energy Systems for Heat Supply in Housing and Communal Services\",\"authors\":\"P. Khavanov\",\"doi\":\"10.33383/2021-079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Energy saving in small-scale heat power engineering is directed to increasing the efficiency of using fossil energy carriers, electric power, and their wider replacement with alternative sources in housing and communal complex. The practical use of active solar energy systems, both photovoltaic and with direct water heating, has found widespread use. At the same time, the specificities of these systems deployment are caused by climatic and technical conditions of their application. For countries found in climatic zones with temperate and cold climate, water heating installations design is most rational when used seasonally. Low coolant potential, heat supply frequency in active solar energy systems, linked to seasonality of their operation, daytime and weather require several technical solutions. For example, solutions with the use of other equipment in form of thermal energy accumulators, heat pumps and other equipment, which in any case must be combined with a traditional source of thermal energy using fossil fuels or electric power, performing the functions of both other and emergency source of heat energy. Capacity reserving of alternative energy sources is most efficient and least energy-consuming when conducting with heat sources using gaseous or degasified fuel. The use of electric power for heat supply purpose, with few capital investments, requires from a developer significant installed capacities of heat source with a low efficiency for primary fuel. In the article one considers thermal schemes of autonomous heat supply installations for objects using modern condensing boilers of low power and along them various heat cumulating devices, supplying full year operation of equipment at heat supply facilities to get the highest efficiency of energy use.\",\"PeriodicalId\":49907,\"journal\":{\"name\":\"Light & Engineering\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Light & Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.33383/2021-079\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.33383/2021-079","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

小型热电工程中的节能旨在提高化石能源载体、电力的使用效率,并在住房和公共综合体中更广泛地使用替代能源。主动太阳能系统的实际应用,包括光电和直接水加热,已经得到了广泛的应用。同时,这些系统部署的特殊性是由其应用的气候和技术条件引起的。对于温带和寒带气候的国家,季节性使用的热水装置设计最合理。冷却剂潜力低,主动式太阳能系统的供热频率与其运行的季节性、白天和天气有关,需要几种技术解决方案。例如,使用热能蓄能器、热泵和其他设备形式的其他设备的解决方案,这些设备在任何情况下都必须与使用化石燃料或电力的传统热能源相结合,同时发挥其他热源和应急热源的功能。当与使用气体或脱气化燃料的热源进行传导时,替代能源的容量储备是最有效和最耗能的。利用电力供热的目的,很少的资本投资,需要开发商安装大量的热源,初级燃料的效率很低。本文研究了采用现代低功率冷凝锅炉和各种蓄热装置的对象的自主供热装置的热方案,供供热设施设备全年运行,以获得最高的能源利用效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Autonomous Active Solar Energy Systems for Heat Supply in Housing and Communal Services
Energy saving in small-scale heat power engineering is directed to increasing the efficiency of using fossil energy carriers, electric power, and their wider replacement with alternative sources in housing and communal complex. The practical use of active solar energy systems, both photovoltaic and with direct water heating, has found widespread use. At the same time, the specificities of these systems deployment are caused by climatic and technical conditions of their application. For countries found in climatic zones with temperate and cold climate, water heating installations design is most rational when used seasonally. Low coolant potential, heat supply frequency in active solar energy systems, linked to seasonality of their operation, daytime and weather require several technical solutions. For example, solutions with the use of other equipment in form of thermal energy accumulators, heat pumps and other equipment, which in any case must be combined with a traditional source of thermal energy using fossil fuels or electric power, performing the functions of both other and emergency source of heat energy. Capacity reserving of alternative energy sources is most efficient and least energy-consuming when conducting with heat sources using gaseous or degasified fuel. The use of electric power for heat supply purpose, with few capital investments, requires from a developer significant installed capacities of heat source with a low efficiency for primary fuel. In the article one considers thermal schemes of autonomous heat supply installations for objects using modern condensing boilers of low power and along them various heat cumulating devices, supplying full year operation of equipment at heat supply facilities to get the highest efficiency of energy use.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Light & Engineering
Light & Engineering ENGINEERING, ELECTRICAL & ELECTRONIC-OPTICS
CiteScore
1.00
自引率
50.00%
发文量
0
审稿时长
1 months
期刊介绍: Our magazine develops comprehensive communication within the lighting community, providing opportunities for discussion and free expression of opinions of specialists of different profiles; contributes to the convergence of science and engineering practice, the search for opportunities for the application of research results in lighting and technological applications of light; keeps the scientific community up to date with the latest advances in the theory of the light field, providing readers with operational professional information; initiates international cooperation, promotes and distributes the results of Russian authors in the international professional community; provides equal opportunities for authors from different regions of Russia and other countries. The journal publishes articles in the following areas: visual and non-visual effects of radiation on humans; light field theory; photometry and colorimetry; sources of light; ballasts; light devices, their design and production technology; lighting and irradiation installation; light signaling; methods of mathematical modeling of light devices and installations; problems of energy saving in lighting, installation and operation of lighting installations; modern production technologies of lighting products for lighting control systems; innovative design solutions; innovations in lighting and lighting design; the study of the effect on plants and animals, problems of using light in medicine; problems of disinfection of premises, water and smell elimination with the help of technology of UV radiation using; problems of light in the ocean and space.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信