两个不同单变量分布间Wasserstein型距离的中心极限定理

IF 1.2 2区 数学 Q2 STATISTICS & PROBABILITY
Philippe Berthet, J. Fort, T. Klein
{"title":"两个不同单变量分布间Wasserstein型距离的中心极限定理","authors":"Philippe Berthet, J. Fort, T. Klein","doi":"10.1214/19-aihp990","DOIUrl":null,"url":null,"abstract":"In this article we study the natural nonparametric estimator of a Wasserstein type cost between two distinct continuous distributions F\r\nand G on R. The estimator is based on the order statistics of a sample having marginals F, G and any joint distribution. We prove a central limit theorem under general conditions relating the tails and the cost function. In particular, these conditions are satisfied by Wasserstein distances of order p>1and compatible classical probability distributions.","PeriodicalId":7902,"journal":{"name":"Annales De L Institut Henri Poincare-probabilites Et Statistiques","volume":"34 1","pages":"954-982"},"PeriodicalIF":1.2000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Central Limit Theorem for Wasserstein type distances between two distinct univariate distributions\",\"authors\":\"Philippe Berthet, J. Fort, T. Klein\",\"doi\":\"10.1214/19-aihp990\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article we study the natural nonparametric estimator of a Wasserstein type cost between two distinct continuous distributions F\\r\\nand G on R. The estimator is based on the order statistics of a sample having marginals F, G and any joint distribution. We prove a central limit theorem under general conditions relating the tails and the cost function. In particular, these conditions are satisfied by Wasserstein distances of order p>1and compatible classical probability distributions.\",\"PeriodicalId\":7902,\"journal\":{\"name\":\"Annales De L Institut Henri Poincare-probabilites Et Statistiques\",\"volume\":\"34 1\",\"pages\":\"954-982\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales De L Institut Henri Poincare-probabilites Et Statistiques\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/19-aihp990\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De L Institut Henri Poincare-probabilites Et Statistiques","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/19-aihp990","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2

摘要

本文研究了r上两个不同连续分布F和G之间的Wasserstein型代价的自然非参数估计量,该估计量基于边际为F, G和任意联合分布的样本的阶统计量。在一般条件下证明了尾部与代价函数的中心极限定理。特别是,p>1阶的Wasserstein距离和兼容的经典概率分布满足这些条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Central Limit Theorem for Wasserstein type distances between two distinct univariate distributions
In this article we study the natural nonparametric estimator of a Wasserstein type cost between two distinct continuous distributions F and G on R. The estimator is based on the order statistics of a sample having marginals F, G and any joint distribution. We prove a central limit theorem under general conditions relating the tails and the cost function. In particular, these conditions are satisfied by Wasserstein distances of order p>1and compatible classical probability distributions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
85
审稿时长
6-12 weeks
期刊介绍: The Probability and Statistics section of the Annales de l’Institut Henri Poincaré is an international journal which publishes high quality research papers. The journal deals with all aspects of modern probability theory and mathematical statistics, as well as with their applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信