{"title":"两个不同单变量分布间Wasserstein型距离的中心极限定理","authors":"Philippe Berthet, J. Fort, T. Klein","doi":"10.1214/19-aihp990","DOIUrl":null,"url":null,"abstract":"In this article we study the natural nonparametric estimator of a Wasserstein type cost between two distinct continuous distributions F\r\nand G on R. The estimator is based on the order statistics of a sample having marginals F, G and any joint distribution. We prove a central limit theorem under general conditions relating the tails and the cost function. In particular, these conditions are satisfied by Wasserstein distances of order p>1and compatible classical probability distributions.","PeriodicalId":7902,"journal":{"name":"Annales De L Institut Henri Poincare-probabilites Et Statistiques","volume":"34 1","pages":"954-982"},"PeriodicalIF":1.2000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Central Limit Theorem for Wasserstein type distances between two distinct univariate distributions\",\"authors\":\"Philippe Berthet, J. Fort, T. Klein\",\"doi\":\"10.1214/19-aihp990\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article we study the natural nonparametric estimator of a Wasserstein type cost between two distinct continuous distributions F\\r\\nand G on R. The estimator is based on the order statistics of a sample having marginals F, G and any joint distribution. We prove a central limit theorem under general conditions relating the tails and the cost function. In particular, these conditions are satisfied by Wasserstein distances of order p>1and compatible classical probability distributions.\",\"PeriodicalId\":7902,\"journal\":{\"name\":\"Annales De L Institut Henri Poincare-probabilites Et Statistiques\",\"volume\":\"34 1\",\"pages\":\"954-982\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales De L Institut Henri Poincare-probabilites Et Statistiques\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/19-aihp990\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De L Institut Henri Poincare-probabilites Et Statistiques","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/19-aihp990","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
A Central Limit Theorem for Wasserstein type distances between two distinct univariate distributions
In this article we study the natural nonparametric estimator of a Wasserstein type cost between two distinct continuous distributions F
and G on R. The estimator is based on the order statistics of a sample having marginals F, G and any joint distribution. We prove a central limit theorem under general conditions relating the tails and the cost function. In particular, these conditions are satisfied by Wasserstein distances of order p>1and compatible classical probability distributions.
期刊介绍:
The Probability and Statistics section of the Annales de l’Institut Henri Poincaré is an international journal which publishes high quality research papers. The journal deals with all aspects of modern probability theory and mathematical statistics, as well as with their applications.