冠状病毒传播动力学中的嵌入隔离、接触者追踪和隔离——以武汉市COVID-19为例

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Miao Yu, Zhongsheng Hua
{"title":"冠状病毒传播动力学中的嵌入隔离、接触者追踪和隔离——以武汉市COVID-19为例","authors":"Miao Yu, Zhongsheng Hua","doi":"10.1287/serv.2021.0291","DOIUrl":null,"url":null,"abstract":"Coronaviruses have caused multiple global pandemics. As an emerging epidemic, the coronavirus disease relies on nonpharmacological interventions to control its spread. However, the specific effects of these interventions are unknown. To evaluate their effects, we extend the susceptible–latent–infectious–recovered model to include suspected cases, confirmed cases, and their contacts and to embed isolation, close contact tracing, and quarantine into transmission dynamics. The model simplifies the population into two parts: the undiscovered part (where the virus spreads freely—the extent of freedom is determined by the strength of social distancing policy) and the discovered part (where the cases are incompletely isolated or quarantined). Through the isolation of the index case (suspected or confirmed case) and the subsequent tracing and quarantine of its close contacts, the infections flow from the undiscovered part to the discovered part. In our case study, multisource data of the novel coronavirus SARS-CoV-2 (COVID-19) in Wuhan were collected to validate the model, the parameters were calibrated based on the prediction of the actual number of infections, and then the time-varying effective reproduction number was obtained to measure the transmissibility of COVID-19 in Wuhan, revealing the timeliness and lag effect of the nonpharmacological interventions adopted there. Finally, we simulated the situation in the absence of a strict social distancing policy. Results show that the current efforts of isolation, close contact tracing, and quarantine can take the epidemic curve to the turning point, but the epidemic could be far from over; there were still 4,035 infected people, and 1,584 latent people in the undiscovered part on March 11, 2020, when the epidemic was actually over with a strict social distancing policy.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Embedding Isolation, Contact Tracing, and Quarantine in Transmission Dynamics of the Coronavirus Epidemic—A Case Study of COVID-19 in Wuhan\",\"authors\":\"Miao Yu, Zhongsheng Hua\",\"doi\":\"10.1287/serv.2021.0291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Coronaviruses have caused multiple global pandemics. As an emerging epidemic, the coronavirus disease relies on nonpharmacological interventions to control its spread. However, the specific effects of these interventions are unknown. To evaluate their effects, we extend the susceptible–latent–infectious–recovered model to include suspected cases, confirmed cases, and their contacts and to embed isolation, close contact tracing, and quarantine into transmission dynamics. The model simplifies the population into two parts: the undiscovered part (where the virus spreads freely—the extent of freedom is determined by the strength of social distancing policy) and the discovered part (where the cases are incompletely isolated or quarantined). Through the isolation of the index case (suspected or confirmed case) and the subsequent tracing and quarantine of its close contacts, the infections flow from the undiscovered part to the discovered part. In our case study, multisource data of the novel coronavirus SARS-CoV-2 (COVID-19) in Wuhan were collected to validate the model, the parameters were calibrated based on the prediction of the actual number of infections, and then the time-varying effective reproduction number was obtained to measure the transmissibility of COVID-19 in Wuhan, revealing the timeliness and lag effect of the nonpharmacological interventions adopted there. Finally, we simulated the situation in the absence of a strict social distancing policy. Results show that the current efforts of isolation, close contact tracing, and quarantine can take the epidemic curve to the turning point, but the epidemic could be far from over; there were still 4,035 infected people, and 1,584 latent people in the undiscovered part on March 11, 2020, when the epidemic was actually over with a strict social distancing policy.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1287/serv.2021.0291\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1287/serv.2021.0291","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

摘要

冠状病毒引发了多次全球大流行。作为一种新兴的流行病,冠状病毒病依靠非药物干预来控制其传播。然而,这些干预措施的具体效果尚不清楚。为了评估其效果,我们将易感潜伏感染恢复模型扩展到包括疑似病例、确诊病例及其接触者,并将隔离、密切接触者追踪和隔离纳入传播动力学。该模型将人口简化为两部分:未被发现的部分(病毒自由传播的程度由社会距离政策的力度决定)和已发现的部分(病例未完全隔离或隔离)。通过对指示病例(疑似或确诊病例)的隔离,以及后续对其密切接触者的追踪和隔离,使感染从未发现部位流向已发现部位。本研究通过收集武汉市新型冠状病毒SARS-CoV-2 (COVID-19)的多源数据对模型进行验证,并根据实际感染人数的预测对参数进行校正,得到时变有效繁殖数,以衡量COVID-19在武汉市的传播性,揭示了在武汉市采取的非药物干预措施的时效性和滞后性。最后,我们模拟了没有严格的社交距离政策的情况。结果表明,目前采取的隔离、密切接触者追踪和隔离等措施可以使疫情曲线走向拐点,但疫情可能远未结束;2020年3月11日,在严格的社会距离政策下,疫情实际上已经结束,但仍有4035人感染,1584人潜伏在未被发现的地区。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Embedding Isolation, Contact Tracing, and Quarantine in Transmission Dynamics of the Coronavirus Epidemic—A Case Study of COVID-19 in Wuhan
Coronaviruses have caused multiple global pandemics. As an emerging epidemic, the coronavirus disease relies on nonpharmacological interventions to control its spread. However, the specific effects of these interventions are unknown. To evaluate their effects, we extend the susceptible–latent–infectious–recovered model to include suspected cases, confirmed cases, and their contacts and to embed isolation, close contact tracing, and quarantine into transmission dynamics. The model simplifies the population into two parts: the undiscovered part (where the virus spreads freely—the extent of freedom is determined by the strength of social distancing policy) and the discovered part (where the cases are incompletely isolated or quarantined). Through the isolation of the index case (suspected or confirmed case) and the subsequent tracing and quarantine of its close contacts, the infections flow from the undiscovered part to the discovered part. In our case study, multisource data of the novel coronavirus SARS-CoV-2 (COVID-19) in Wuhan were collected to validate the model, the parameters were calibrated based on the prediction of the actual number of infections, and then the time-varying effective reproduction number was obtained to measure the transmissibility of COVID-19 in Wuhan, revealing the timeliness and lag effect of the nonpharmacological interventions adopted there. Finally, we simulated the situation in the absence of a strict social distancing policy. Results show that the current efforts of isolation, close contact tracing, and quarantine can take the epidemic curve to the turning point, but the epidemic could be far from over; there were still 4,035 infected people, and 1,584 latent people in the undiscovered part on March 11, 2020, when the epidemic was actually over with a strict social distancing policy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信