{"title":"语音控制轮椅中生物识别接口的实现","authors":"Lamia Bouafif, N. Ellouze","doi":"10.32604/sv.2020.08665","DOIUrl":null,"url":null,"abstract":": In order to assist physically handicapped persons in their movements, we developed an embedded isolated word speech recognition system (ASR) applied to voice control of smart wheelchairs. However, in spite of the existence in the industrial market of several kinds of electric wheelchairs, the problem remains the need to manually control this device by hand via joystick; which lim-its their use especially by people with severe disabilities. Thus, a signi fi cant number of disabled people cannot use a standard electric wheelchair or drive it with dif fi culty. The proposed solution is to use the voice to control and drive the wheelchair instead of classical joysticks. The intelligent chair is equipped with an obstacle detection system consisting of ultrasonic sensors, a moving navigation algorithm and a speech acquisition and recognition module for voice control embedded in a DSP card. The ASR architecture consists of two main modules. The fi rst one is the speech parameterization module (features extraction) and the second module is the classi fi er which identi fi es the speech and generates the control word to motors power unit. The training and recognition phases are based on Hidden Markov Models (HMM), K-means, Baum-Welch and Viterbi algorithms. The database consists of 39 isolated speaker words (13 words pronounced 3 times under different environments and conditions). The simulations are tested under Matlab environment and the real-time implementation is performed by C language with code composer studio embedded in a TMS 320 C6416 DSP kit. The results and experiments obtained gave promising recognition ratio and accuracy around 99% in clean environment. However, the system accuracy decreases considerably in noisy environments, especially for SNR values below 5 dB (in street: 78%, in factory: 52%).","PeriodicalId":49496,"journal":{"name":"Sound and Vibration","volume":"105 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Implementation of a Biometric Interface in Voice Controlled Wheelchairs\",\"authors\":\"Lamia Bouafif, N. Ellouze\",\"doi\":\"10.32604/sv.2020.08665\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": In order to assist physically handicapped persons in their movements, we developed an embedded isolated word speech recognition system (ASR) applied to voice control of smart wheelchairs. However, in spite of the existence in the industrial market of several kinds of electric wheelchairs, the problem remains the need to manually control this device by hand via joystick; which lim-its their use especially by people with severe disabilities. Thus, a signi fi cant number of disabled people cannot use a standard electric wheelchair or drive it with dif fi culty. The proposed solution is to use the voice to control and drive the wheelchair instead of classical joysticks. The intelligent chair is equipped with an obstacle detection system consisting of ultrasonic sensors, a moving navigation algorithm and a speech acquisition and recognition module for voice control embedded in a DSP card. The ASR architecture consists of two main modules. The fi rst one is the speech parameterization module (features extraction) and the second module is the classi fi er which identi fi es the speech and generates the control word to motors power unit. The training and recognition phases are based on Hidden Markov Models (HMM), K-means, Baum-Welch and Viterbi algorithms. The database consists of 39 isolated speaker words (13 words pronounced 3 times under different environments and conditions). The simulations are tested under Matlab environment and the real-time implementation is performed by C language with code composer studio embedded in a TMS 320 C6416 DSP kit. The results and experiments obtained gave promising recognition ratio and accuracy around 99% in clean environment. However, the system accuracy decreases considerably in noisy environments, especially for SNR values below 5 dB (in street: 78%, in factory: 52%).\",\"PeriodicalId\":49496,\"journal\":{\"name\":\"Sound and Vibration\",\"volume\":\"105 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sound and Vibration\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.32604/sv.2020.08665\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sound and Vibration","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.32604/sv.2020.08665","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
Implementation of a Biometric Interface in Voice Controlled Wheelchairs
: In order to assist physically handicapped persons in their movements, we developed an embedded isolated word speech recognition system (ASR) applied to voice control of smart wheelchairs. However, in spite of the existence in the industrial market of several kinds of electric wheelchairs, the problem remains the need to manually control this device by hand via joystick; which lim-its their use especially by people with severe disabilities. Thus, a signi fi cant number of disabled people cannot use a standard electric wheelchair or drive it with dif fi culty. The proposed solution is to use the voice to control and drive the wheelchair instead of classical joysticks. The intelligent chair is equipped with an obstacle detection system consisting of ultrasonic sensors, a moving navigation algorithm and a speech acquisition and recognition module for voice control embedded in a DSP card. The ASR architecture consists of two main modules. The fi rst one is the speech parameterization module (features extraction) and the second module is the classi fi er which identi fi es the speech and generates the control word to motors power unit. The training and recognition phases are based on Hidden Markov Models (HMM), K-means, Baum-Welch and Viterbi algorithms. The database consists of 39 isolated speaker words (13 words pronounced 3 times under different environments and conditions). The simulations are tested under Matlab environment and the real-time implementation is performed by C language with code composer studio embedded in a TMS 320 C6416 DSP kit. The results and experiments obtained gave promising recognition ratio and accuracy around 99% in clean environment. However, the system accuracy decreases considerably in noisy environments, especially for SNR values below 5 dB (in street: 78%, in factory: 52%).
期刊介绍:
Sound & Vibration is a journal intended for individuals with broad-based interests in noise and vibration, dynamic measurements, structural analysis, computer-aided engineering, machinery reliability, and dynamic testing. The journal strives to publish referred papers reflecting the interests of research and practical engineering on any aspects of sound and vibration. Of particular interest are papers that report analytical, numerical and experimental methods of more relevance to practical applications.
Papers are sought that contribute to the following general topics:
-broad-based interests in noise and vibration-
dynamic measurements-
structural analysis-
computer-aided engineering-
machinery reliability-
dynamic testing