{"title":"$3^n$子因子的分类及相关的融合范畴","authors":"Masaki Izumi","doi":"10.4171/QT/113","DOIUrl":null,"url":null,"abstract":"We investigate a (potentially infinite) series of subfactors, called $3^n$ subfactors, including $A_4$, $A_7$, and the Haagerup subfactor as the first three members corresponding to $n=1,2,3$. Generalizing our previous work for odd $n$, we further develop a Cuntz algebra method to construct $3^n$ subfactors and show that the classification of the $3^n$ subfactors and related fusion categories is reduced to explicit polynomial equations under a mild assumption, which automatically holds for odd $n$.In particular, our method with $n=4$ gives a uniform construction of 4 finite depth subfactors, up to dual,without intermediate subfactors of index $3+\\sqrt{5}$. It also provides a key step for a new construction of the Asaeda-Haagerup subfactor due to Grossman, Snyder, and the author.","PeriodicalId":51331,"journal":{"name":"Quantum Topology","volume":"2012 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2016-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"The classification of $3^n$ subfactors and related fusion categories\",\"authors\":\"Masaki Izumi\",\"doi\":\"10.4171/QT/113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate a (potentially infinite) series of subfactors, called $3^n$ subfactors, including $A_4$, $A_7$, and the Haagerup subfactor as the first three members corresponding to $n=1,2,3$. Generalizing our previous work for odd $n$, we further develop a Cuntz algebra method to construct $3^n$ subfactors and show that the classification of the $3^n$ subfactors and related fusion categories is reduced to explicit polynomial equations under a mild assumption, which automatically holds for odd $n$.In particular, our method with $n=4$ gives a uniform construction of 4 finite depth subfactors, up to dual,without intermediate subfactors of index $3+\\\\sqrt{5}$. It also provides a key step for a new construction of the Asaeda-Haagerup subfactor due to Grossman, Snyder, and the author.\",\"PeriodicalId\":51331,\"journal\":{\"name\":\"Quantum Topology\",\"volume\":\"2012 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2016-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Topology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/QT/113\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Topology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/QT/113","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
The classification of $3^n$ subfactors and related fusion categories
We investigate a (potentially infinite) series of subfactors, called $3^n$ subfactors, including $A_4$, $A_7$, and the Haagerup subfactor as the first three members corresponding to $n=1,2,3$. Generalizing our previous work for odd $n$, we further develop a Cuntz algebra method to construct $3^n$ subfactors and show that the classification of the $3^n$ subfactors and related fusion categories is reduced to explicit polynomial equations under a mild assumption, which automatically holds for odd $n$.In particular, our method with $n=4$ gives a uniform construction of 4 finite depth subfactors, up to dual,without intermediate subfactors of index $3+\sqrt{5}$. It also provides a key step for a new construction of the Asaeda-Haagerup subfactor due to Grossman, Snyder, and the author.
期刊介绍:
Quantum Topology is a peer reviewed journal dedicated to publishing original research articles, short communications, and surveys in quantum topology and related areas of mathematics. Topics covered include in particular:
Low-dimensional Topology
Knot Theory
Jones Polynomial and Khovanov Homology
Topological Quantum Field Theory
Quantum Groups and Hopf Algebras
Mapping Class Groups and Teichmüller space
Categorification
Braid Groups and Braided Categories
Fusion Categories
Subfactors and Planar Algebras
Contact and Symplectic Topology
Topological Methods in Physics.