聚类分析与q法分组结果比较

Katherine M. Ehlert, Marisa K. Orr
{"title":"聚类分析与q法分组结果比较","authors":"Katherine M. Ehlert, Marisa K. Orr","doi":"10.1109/FIE43999.2019.9028444","DOIUrl":null,"url":null,"abstract":"The primary purpose of this Student Research Poster Paper is to discuss two grouping methodologies: cluste analysis and the Q-Methodology. Each of these statistical methodologies quantitatively group similar individuals but do so in two separate ways. In cluster analysis, individuals are grouped by optimizing proximity measures. For example, the single link clustering algorithm groups individuals together that have the smallest Euclidean distance from each other. In Q-Methodology, individuals are grouped by evaluating person-to-person correlations. For example, if two individuals have a correlation of 0.78, they are likely to be grouped together whereas individuals with a correlation of 0.09 are likely to be in different groups. In this paper, we outline multiple clustering approaches, the grouping mechanism in Q-Methodology, and discuss the differences between these two approaches when grouping participants. During this discussion, we will use an example from our own engineering education research to compare grouping results from the same data set. This paper contributes to the research field by describing and utilizing a relatively unknown methodology in engineering education. It will also add to our knowledge of cluster analysis techniques and compare those algorithms to another robust grouping method.","PeriodicalId":6700,"journal":{"name":"2019 IEEE Frontiers in Education Conference (FIE)","volume":"14 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Comparing Grouping Results Between Cluster Analysis and Q-Methodology\",\"authors\":\"Katherine M. Ehlert, Marisa K. Orr\",\"doi\":\"10.1109/FIE43999.2019.9028444\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The primary purpose of this Student Research Poster Paper is to discuss two grouping methodologies: cluste analysis and the Q-Methodology. Each of these statistical methodologies quantitatively group similar individuals but do so in two separate ways. In cluster analysis, individuals are grouped by optimizing proximity measures. For example, the single link clustering algorithm groups individuals together that have the smallest Euclidean distance from each other. In Q-Methodology, individuals are grouped by evaluating person-to-person correlations. For example, if two individuals have a correlation of 0.78, they are likely to be grouped together whereas individuals with a correlation of 0.09 are likely to be in different groups. In this paper, we outline multiple clustering approaches, the grouping mechanism in Q-Methodology, and discuss the differences between these two approaches when grouping participants. During this discussion, we will use an example from our own engineering education research to compare grouping results from the same data set. This paper contributes to the research field by describing and utilizing a relatively unknown methodology in engineering education. It will also add to our knowledge of cluster analysis techniques and compare those algorithms to another robust grouping method.\",\"PeriodicalId\":6700,\"journal\":{\"name\":\"2019 IEEE Frontiers in Education Conference (FIE)\",\"volume\":\"14 1\",\"pages\":\"1-3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Frontiers in Education Conference (FIE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FIE43999.2019.9028444\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Frontiers in Education Conference (FIE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FIE43999.2019.9028444","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

这篇学生研究海报论文的主要目的是讨论两种分组方法:聚类分析和q方法。这些统计方法中的每一种都以两种不同的方式对相似的个体进行定量分组。在聚类分析中,个体通过优化接近度量来分组。例如,单链接聚类算法将彼此之间欧几里德距离最小的个体分组在一起。在q -方法论中,通过评估人与人之间的相关性来对个体进行分组。例如,如果两个个体的相关性为0.78,他们很可能被归为一组,而相关性为0.09的个体很可能属于不同的组。在本文中,我们概述了多种聚类方法,q -方法学中的分组机制,并讨论了这两种方法在分组参与者时的区别。在这次讨论中,我们将使用我们自己的工程教育研究中的一个例子来比较来自同一数据集的分组结果。本文通过描述和利用一种相对未知的工程教育方法,为研究领域做出了贡献。它还将增加我们对聚类分析技术的知识,并将这些算法与另一种健壮的分组方法进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparing Grouping Results Between Cluster Analysis and Q-Methodology
The primary purpose of this Student Research Poster Paper is to discuss two grouping methodologies: cluste analysis and the Q-Methodology. Each of these statistical methodologies quantitatively group similar individuals but do so in two separate ways. In cluster analysis, individuals are grouped by optimizing proximity measures. For example, the single link clustering algorithm groups individuals together that have the smallest Euclidean distance from each other. In Q-Methodology, individuals are grouped by evaluating person-to-person correlations. For example, if two individuals have a correlation of 0.78, they are likely to be grouped together whereas individuals with a correlation of 0.09 are likely to be in different groups. In this paper, we outline multiple clustering approaches, the grouping mechanism in Q-Methodology, and discuss the differences between these two approaches when grouping participants. During this discussion, we will use an example from our own engineering education research to compare grouping results from the same data set. This paper contributes to the research field by describing and utilizing a relatively unknown methodology in engineering education. It will also add to our knowledge of cluster analysis techniques and compare those algorithms to another robust grouping method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信