制定消除地下储气库水合物形成的措施

Q3 Engineering
V. Volovetskyi, Ya. Doroshenko, A.O. Bugai, G. Kogut, P. Raiter, Y. Femiak, R.V. Bondarenko
{"title":"制定消除地下储气库水合物形成的措施","authors":"V. Volovetskyi, Ya. Doroshenko, A.O. Bugai, G. Kogut, P. Raiter, Y. Femiak, R.V. Bondarenko","doi":"10.5604/01.3001.0015.9996","DOIUrl":null,"url":null,"abstract":"The objective of this article is the analysys of methods for preventing and eliminating hydrates formations, classifying them and choosing the best ones for use in underground gas storage facilities. Comprehensive measures for the stable operation of gas storage facilities in the presence of conditions for the occurrence of hydrates formations were developed. Zones, being potentially prone to the hydrates formation during the gas storage facilities operation were identified. The operational parameters of gas storage wells during gas withdrawal are analyzed. The identified wells were operated under difficult conditions due to the deposition of hydrates on the wellheads, in flowlines and process equipment of gas storage facilities. The places of the highest hydrates accumulation on underground gas storages were determined: from the bottomhole of wells to the gas purification unit of the gas gathering station. Hydrate-prone zones were identified by computational fluid dynamic (CFD) modeling at the location of regulating choke installations in underground gas storage facilities. The zones of the greatest hydrates accumulation on underground gas storages were determined: from the bottomhole of wells to the gas purification unit of the gas gathering station. The analysis of the methods used in gas storage facilities of Ukraine to prevent and eliminate hydrates formation was out. A set of measures was proposed to prevent the hydrates formation in storage facilities to ensure their stable operation. Based on the Euler approach (Mixture model) by CFD modeling, zones prone to hydrates formation were determined at the installation site of regulating chokes in underground gas storages. The influence of the degree of fittings opening on the location of potential zones prone to hydrates formation was estimated. The gas-dynamic processes in the internal cavity of the gas pipeline at the installation site of the control fittings were studied and their influence on the distribution of bulk particles of the gaseous and liquid phases was established. Based on the studies performed, it was recommended to change periodically the mode of well operation for a certain time by opening or closing the regulating choke under favorable conditions for the formation of hydrates, especially at low ambient temperatures. The obtained results of experimental studies and calculations showed that in order to solve the problem of hydrates formation at gas storage facilities, it is advisable to use diverse measures through the introduction of modern intelligent systems for monitoring and controlling the technological process. Further refinement of the algorithm of the proposed monitoring and control system with its approbation in production was provided. The results of the experimental studies and CFD modeling carried out allowed providing a more reasonable approach to the application of various available methods and measures to prevent hydrates formation in underground gas storage facilities. This approach made it possible to develop new effective ways and measures to prevent such complication. Based on the conducted experimental studies and modeling, the major zones prone to hydrates formation in underground gas storages were determined. The developed measures will allow timely detection and prevention of hydrates formation at gas storage facilities are original.","PeriodicalId":14825,"journal":{"name":"Journal of Achievements in Materials and Manufacturing Engineering","volume":"71 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Developing measures to eliminate of hydrate formation in underground gas storages\",\"authors\":\"V. Volovetskyi, Ya. Doroshenko, A.O. Bugai, G. Kogut, P. Raiter, Y. Femiak, R.V. Bondarenko\",\"doi\":\"10.5604/01.3001.0015.9996\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of this article is the analysys of methods for preventing and eliminating hydrates formations, classifying them and choosing the best ones for use in underground gas storage facilities. Comprehensive measures for the stable operation of gas storage facilities in the presence of conditions for the occurrence of hydrates formations were developed. Zones, being potentially prone to the hydrates formation during the gas storage facilities operation were identified. The operational parameters of gas storage wells during gas withdrawal are analyzed. The identified wells were operated under difficult conditions due to the deposition of hydrates on the wellheads, in flowlines and process equipment of gas storage facilities. The places of the highest hydrates accumulation on underground gas storages were determined: from the bottomhole of wells to the gas purification unit of the gas gathering station. Hydrate-prone zones were identified by computational fluid dynamic (CFD) modeling at the location of regulating choke installations in underground gas storage facilities. The zones of the greatest hydrates accumulation on underground gas storages were determined: from the bottomhole of wells to the gas purification unit of the gas gathering station. The analysis of the methods used in gas storage facilities of Ukraine to prevent and eliminate hydrates formation was out. A set of measures was proposed to prevent the hydrates formation in storage facilities to ensure their stable operation. Based on the Euler approach (Mixture model) by CFD modeling, zones prone to hydrates formation were determined at the installation site of regulating chokes in underground gas storages. The influence of the degree of fittings opening on the location of potential zones prone to hydrates formation was estimated. The gas-dynamic processes in the internal cavity of the gas pipeline at the installation site of the control fittings were studied and their influence on the distribution of bulk particles of the gaseous and liquid phases was established. Based on the studies performed, it was recommended to change periodically the mode of well operation for a certain time by opening or closing the regulating choke under favorable conditions for the formation of hydrates, especially at low ambient temperatures. The obtained results of experimental studies and calculations showed that in order to solve the problem of hydrates formation at gas storage facilities, it is advisable to use diverse measures through the introduction of modern intelligent systems for monitoring and controlling the technological process. Further refinement of the algorithm of the proposed monitoring and control system with its approbation in production was provided. The results of the experimental studies and CFD modeling carried out allowed providing a more reasonable approach to the application of various available methods and measures to prevent hydrates formation in underground gas storage facilities. This approach made it possible to develop new effective ways and measures to prevent such complication. Based on the conducted experimental studies and modeling, the major zones prone to hydrates formation in underground gas storages were determined. The developed measures will allow timely detection and prevention of hydrates formation at gas storage facilities are original.\",\"PeriodicalId\":14825,\"journal\":{\"name\":\"Journal of Achievements in Materials and Manufacturing Engineering\",\"volume\":\"71 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Achievements in Materials and Manufacturing Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5604/01.3001.0015.9996\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Achievements in Materials and Manufacturing Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5604/01.3001.0015.9996","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 5

摘要

本文的目的是对地下储气设施中防止和消除水合物的方法进行分析,并对水合物进行分类和选择。提出了在存在水合物赋存条件下储气设施稳定运行的综合措施。在储气设施运行过程中,确定了可能容易形成水合物的区域。分析了储气井在抽气过程中的操作参数。由于水合物沉积在井口、管道和储气设施的工艺设备上,所确定的井在困难的条件下作业。确定了地下储气库水合物富集程度最高的位置:从井底到集气站气体净化装置。通过计算流体动力学(CFD)建模,确定了地下储气库调节节流装置位置的水合物易发区。确定了地下储气库水合物最富集的区域:从井底到集气站气体净化装置。对乌克兰储气设施防止和消除水合物形成的方法进行了分析。提出了一套防止储水设施中水合物形成的措施,以保证储水设施的稳定运行。基于CFD建模的欧拉方法(混合模型),确定了地下储气库调节节流器安装位置的易形成水合物区域。估计了管件张开程度对易形成水合物的潜在层位的影响。研究了控制管件安装位置燃气管道内腔内的气动力过程,确定了其对气相和液相体积颗粒分布的影响。根据所进行的研究,建议在有利于水合物形成的条件下,特别是在较低的环境温度下,通过打开或关闭调节节流阀,周期性地改变井的运行模式一段时间。实验研究和计算结果表明,通过引入现代智能系统对工艺过程进行监控,采取多种措施解决储气设施水合物形成问题是可取的。对所提出的监控系统算法进行了进一步的改进,并在生产中得到了认可。通过实验研究和CFD建模的结果,为地下储气设施防止水合物形成的各种可行方法和措施的应用提供了更为合理的思路。这一方法使开发新的有效方法和措施来预防这种并发症成为可能。在实验研究和模拟的基础上,确定了地下储气库中易形成水合物的主要区域。开发的措施将允许及时检测和预防天然气储存设施中的水合物形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Developing measures to eliminate of hydrate formation in underground gas storages
The objective of this article is the analysys of methods for preventing and eliminating hydrates formations, classifying them and choosing the best ones for use in underground gas storage facilities. Comprehensive measures for the stable operation of gas storage facilities in the presence of conditions for the occurrence of hydrates formations were developed. Zones, being potentially prone to the hydrates formation during the gas storage facilities operation were identified. The operational parameters of gas storage wells during gas withdrawal are analyzed. The identified wells were operated under difficult conditions due to the deposition of hydrates on the wellheads, in flowlines and process equipment of gas storage facilities. The places of the highest hydrates accumulation on underground gas storages were determined: from the bottomhole of wells to the gas purification unit of the gas gathering station. Hydrate-prone zones were identified by computational fluid dynamic (CFD) modeling at the location of regulating choke installations in underground gas storage facilities. The zones of the greatest hydrates accumulation on underground gas storages were determined: from the bottomhole of wells to the gas purification unit of the gas gathering station. The analysis of the methods used in gas storage facilities of Ukraine to prevent and eliminate hydrates formation was out. A set of measures was proposed to prevent the hydrates formation in storage facilities to ensure their stable operation. Based on the Euler approach (Mixture model) by CFD modeling, zones prone to hydrates formation were determined at the installation site of regulating chokes in underground gas storages. The influence of the degree of fittings opening on the location of potential zones prone to hydrates formation was estimated. The gas-dynamic processes in the internal cavity of the gas pipeline at the installation site of the control fittings were studied and their influence on the distribution of bulk particles of the gaseous and liquid phases was established. Based on the studies performed, it was recommended to change periodically the mode of well operation for a certain time by opening or closing the regulating choke under favorable conditions for the formation of hydrates, especially at low ambient temperatures. The obtained results of experimental studies and calculations showed that in order to solve the problem of hydrates formation at gas storage facilities, it is advisable to use diverse measures through the introduction of modern intelligent systems for monitoring and controlling the technological process. Further refinement of the algorithm of the proposed monitoring and control system with its approbation in production was provided. The results of the experimental studies and CFD modeling carried out allowed providing a more reasonable approach to the application of various available methods and measures to prevent hydrates formation in underground gas storage facilities. This approach made it possible to develop new effective ways and measures to prevent such complication. Based on the conducted experimental studies and modeling, the major zones prone to hydrates formation in underground gas storages were determined. The developed measures will allow timely detection and prevention of hydrates formation at gas storage facilities are original.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Achievements in Materials and Manufacturing Engineering
Journal of Achievements in Materials and Manufacturing Engineering Engineering-Industrial and Manufacturing Engineering
CiteScore
2.10
自引率
0.00%
发文量
15
期刊介绍: The Journal of Achievements in Materials and Manufacturing Engineering has been published by the Association for Computational Materials Science and Surface Engineering in collaboration with the World Academy of Materials and Manufacturing Engineering WAMME and the Section Metallic Materials of the Committee of Materials Science of the Polish Academy of Sciences as a monthly. It has 12 points which was received during the evaluation by the Ministry of Science and Higher Education journals and ICV 2017:100 on the ICI Journals Master list announced by the Index Copernicus. It is a continuation of "Proceedings on Achievements in Mechanical and Materials Engineering" published in 1992-2005. Scope: Materials[...] Properties[...] Methodology of Research[...] Analysis and Modelling[...] Manufacturing and Processingv Biomedical and Dental Engineering and Materials[...] Cleaner Production[...] Industrial Mangement and Organisation [...] Education and Research Trends[...]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信