有记忆随机过程的Donsker函数

IF 0.5 Q4 MULTIDISCIPLINARY SCIENCES
H. Suryawan
{"title":"有记忆随机过程的Donsker函数","authors":"H. Suryawan","doi":"10.5614/j.math.fund.sci.2019.51.3.5","DOIUrl":null,"url":null,"abstract":"A class of stochastic processes with memory within the framework of the Hida calculus was studied. It was proved that the Donsker delta functionals of the processes are Hida distributions. Furthermore, the probability density function of the processes and the chaos decomposition of the Donsker delta functional were derived. As an application, the existence of the renormalized local times in an arbitrary dimension of the Riemann-Liouville fractional Brownian motion as a white noise generalized function was proved.","PeriodicalId":16255,"journal":{"name":"Journal of Mathematical and Fundamental Sciences","volume":"51 1","pages":"265-277"},"PeriodicalIF":0.5000,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Donsker’s Delta Functional of Stochastic Processes with Memory\",\"authors\":\"H. Suryawan\",\"doi\":\"10.5614/j.math.fund.sci.2019.51.3.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A class of stochastic processes with memory within the framework of the Hida calculus was studied. It was proved that the Donsker delta functionals of the processes are Hida distributions. Furthermore, the probability density function of the processes and the chaos decomposition of the Donsker delta functional were derived. As an application, the existence of the renormalized local times in an arbitrary dimension of the Riemann-Liouville fractional Brownian motion as a white noise generalized function was proved.\",\"PeriodicalId\":16255,\"journal\":{\"name\":\"Journal of Mathematical and Fundamental Sciences\",\"volume\":\"51 1\",\"pages\":\"265-277\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2019-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical and Fundamental Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5614/j.math.fund.sci.2019.51.3.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical and Fundamental Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5614/j.math.fund.sci.2019.51.3.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 2

摘要

在Hida微积分的框架内研究了一类具有记忆的随机过程。证明了过程的Donsker泛函是Hida分布。进一步推导了过程的概率密度函数和Donsker函数的混沌分解。作为应用,证明了Riemann-Liouville分数布朗运动作为白噪声广义函数在任意维上重整化局部时的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Donsker’s Delta Functional of Stochastic Processes with Memory
A class of stochastic processes with memory within the framework of the Hida calculus was studied. It was proved that the Donsker delta functionals of the processes are Hida distributions. Furthermore, the probability density function of the processes and the chaos decomposition of the Donsker delta functional were derived. As an application, the existence of the renormalized local times in an arbitrary dimension of the Riemann-Liouville fractional Brownian motion as a white noise generalized function was proved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
24 weeks
期刊介绍: Journal of Mathematical and Fundamental Sciences welcomes full research articles in the area of Mathematics and Natural Sciences from the following subject areas: Astronomy, Chemistry, Earth Sciences (Geodesy, Geology, Geophysics, Oceanography, Meteorology), Life Sciences (Agriculture, Biochemistry, Biology, Health Sciences, Medical Sciences, Pharmacy), Mathematics, Physics, and Statistics. New submissions of mathematics articles starting in January 2020 are required to focus on applied mathematics with real relevance to the field of natural sciences. Authors are invited to submit articles that have not been published previously and are not under consideration elsewhere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信