{"title":"有记忆随机过程的Donsker函数","authors":"H. Suryawan","doi":"10.5614/j.math.fund.sci.2019.51.3.5","DOIUrl":null,"url":null,"abstract":"A class of stochastic processes with memory within the framework of the Hida calculus was studied. It was proved that the Donsker delta functionals of the processes are Hida distributions. Furthermore, the probability density function of the processes and the chaos decomposition of the Donsker delta functional were derived. As an application, the existence of the renormalized local times in an arbitrary dimension of the Riemann-Liouville fractional Brownian motion as a white noise generalized function was proved.","PeriodicalId":16255,"journal":{"name":"Journal of Mathematical and Fundamental Sciences","volume":"51 1","pages":"265-277"},"PeriodicalIF":0.5000,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Donsker’s Delta Functional of Stochastic Processes with Memory\",\"authors\":\"H. Suryawan\",\"doi\":\"10.5614/j.math.fund.sci.2019.51.3.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A class of stochastic processes with memory within the framework of the Hida calculus was studied. It was proved that the Donsker delta functionals of the processes are Hida distributions. Furthermore, the probability density function of the processes and the chaos decomposition of the Donsker delta functional were derived. As an application, the existence of the renormalized local times in an arbitrary dimension of the Riemann-Liouville fractional Brownian motion as a white noise generalized function was proved.\",\"PeriodicalId\":16255,\"journal\":{\"name\":\"Journal of Mathematical and Fundamental Sciences\",\"volume\":\"51 1\",\"pages\":\"265-277\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2019-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical and Fundamental Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5614/j.math.fund.sci.2019.51.3.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical and Fundamental Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5614/j.math.fund.sci.2019.51.3.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Donsker’s Delta Functional of Stochastic Processes with Memory
A class of stochastic processes with memory within the framework of the Hida calculus was studied. It was proved that the Donsker delta functionals of the processes are Hida distributions. Furthermore, the probability density function of the processes and the chaos decomposition of the Donsker delta functional were derived. As an application, the existence of the renormalized local times in an arbitrary dimension of the Riemann-Liouville fractional Brownian motion as a white noise generalized function was proved.
期刊介绍:
Journal of Mathematical and Fundamental Sciences welcomes full research articles in the area of Mathematics and Natural Sciences from the following subject areas: Astronomy, Chemistry, Earth Sciences (Geodesy, Geology, Geophysics, Oceanography, Meteorology), Life Sciences (Agriculture, Biochemistry, Biology, Health Sciences, Medical Sciences, Pharmacy), Mathematics, Physics, and Statistics. New submissions of mathematics articles starting in January 2020 are required to focus on applied mathematics with real relevance to the field of natural sciences. Authors are invited to submit articles that have not been published previously and are not under consideration elsewhere.