Stefan Maas, Viet Ha Nguyen, Tanja Kebig, Sebastian Schommer, Arno Zürbes
{"title":"结构健康监测中不同激励和数据采样方法的比较","authors":"Stefan Maas, Viet Ha Nguyen, Tanja Kebig, Sebastian Schommer, Arno Zürbes","doi":"10.1002/cend.201800002","DOIUrl":null,"url":null,"abstract":"<p>Structural Health Monitoring with analysis of dynamic characteristics intends to detect stiffness changes caused by damage. It can be performed by vibrational tests resulting to modal parameters, that is, eigenfrequencies, damping, modeshapes, or modal masses. Those parameters are themselves informational and even allow often deducing the stiffness matrix. Based on that, it is possible to identify and to localize changes in the stiffness matrix due to damage, that is, localization and quantification of damage. However, changing test conditions, like ambient temperature or excitation force or existing nonlinearities of concrete, show important influence on damage indicators and hence need compensation prior to damage detection. Considering this background, this article focuses on comparing ambient excitation to forced excitation including appropriate exciters. Furthermore, continuous monitoring is discussed vs discrete testing in distinct time-intervals. The intention of the comparison is to give an overview, that is, helpful for choosing appropriate measurement technique for the sake of correct damage detection subsequently.</p>","PeriodicalId":100248,"journal":{"name":"Civil Engineering Design","volume":"1 1","pages":"10-16"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cend.201800002","citationCount":"1","resultStr":"{\"title\":\"Comparison of different excitation- and data sampling-methods in structural health monitoring\",\"authors\":\"Stefan Maas, Viet Ha Nguyen, Tanja Kebig, Sebastian Schommer, Arno Zürbes\",\"doi\":\"10.1002/cend.201800002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Structural Health Monitoring with analysis of dynamic characteristics intends to detect stiffness changes caused by damage. It can be performed by vibrational tests resulting to modal parameters, that is, eigenfrequencies, damping, modeshapes, or modal masses. Those parameters are themselves informational and even allow often deducing the stiffness matrix. Based on that, it is possible to identify and to localize changes in the stiffness matrix due to damage, that is, localization and quantification of damage. However, changing test conditions, like ambient temperature or excitation force or existing nonlinearities of concrete, show important influence on damage indicators and hence need compensation prior to damage detection. Considering this background, this article focuses on comparing ambient excitation to forced excitation including appropriate exciters. Furthermore, continuous monitoring is discussed vs discrete testing in distinct time-intervals. The intention of the comparison is to give an overview, that is, helpful for choosing appropriate measurement technique for the sake of correct damage detection subsequently.</p>\",\"PeriodicalId\":100248,\"journal\":{\"name\":\"Civil Engineering Design\",\"volume\":\"1 1\",\"pages\":\"10-16\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/cend.201800002\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Civil Engineering Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cend.201800002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Civil Engineering Design","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cend.201800002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparison of different excitation- and data sampling-methods in structural health monitoring
Structural Health Monitoring with analysis of dynamic characteristics intends to detect stiffness changes caused by damage. It can be performed by vibrational tests resulting to modal parameters, that is, eigenfrequencies, damping, modeshapes, or modal masses. Those parameters are themselves informational and even allow often deducing the stiffness matrix. Based on that, it is possible to identify and to localize changes in the stiffness matrix due to damage, that is, localization and quantification of damage. However, changing test conditions, like ambient temperature or excitation force or existing nonlinearities of concrete, show important influence on damage indicators and hence need compensation prior to damage detection. Considering this background, this article focuses on comparing ambient excitation to forced excitation including appropriate exciters. Furthermore, continuous monitoring is discussed vs discrete testing in distinct time-intervals. The intention of the comparison is to give an overview, that is, helpful for choosing appropriate measurement technique for the sake of correct damage detection subsequently.