航空发动机零件相对位置几何参数数字预测中的神经网络模型

M. Bolotov, V. Pechenin, N. V. Ruzanov, D. Balyakin
{"title":"航空发动机零件相对位置几何参数数字预测中的神经网络模型","authors":"M. Bolotov, V. Pechenin, N. V. Ruzanov, D. Balyakin","doi":"10.18287/1613-0073-2019-2416-87-94","DOIUrl":null,"url":null,"abstract":"The quality of aircraft and rocket engines depends primarily on the geometric accuracy of assembly units and parts. Mathematical models implemented in the form of computer models are used to predict quality indicators (in particular, assembly parameters). Direct modeling of the conjugation process using numerical conjugation and finite-element models of assemblies requires significant computational resources and is often accompanied by problems convergence of solutions. In order to solve the above problems, it is possible to use neural network models describing the main regularities of the pairing process based on the accumulated results. The work presents a neural network model for predicting assembly parameters of the parts based on the use of actual surfaces of the parts obtained as a result of mathematical modeling. Assembly on conical surfaces is considered. A convolutional neural network was used to predict assembly parameters.","PeriodicalId":10486,"journal":{"name":"Collection of selected papers of the III International Conference on Information Technology and Nanotechnology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Neural network model in digital prediction of geometric parameters for relative position of the aircraft engine parts\",\"authors\":\"M. Bolotov, V. Pechenin, N. V. Ruzanov, D. Balyakin\",\"doi\":\"10.18287/1613-0073-2019-2416-87-94\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The quality of aircraft and rocket engines depends primarily on the geometric accuracy of assembly units and parts. Mathematical models implemented in the form of computer models are used to predict quality indicators (in particular, assembly parameters). Direct modeling of the conjugation process using numerical conjugation and finite-element models of assemblies requires significant computational resources and is often accompanied by problems convergence of solutions. In order to solve the above problems, it is possible to use neural network models describing the main regularities of the pairing process based on the accumulated results. The work presents a neural network model for predicting assembly parameters of the parts based on the use of actual surfaces of the parts obtained as a result of mathematical modeling. Assembly on conical surfaces is considered. A convolutional neural network was used to predict assembly parameters.\",\"PeriodicalId\":10486,\"journal\":{\"name\":\"Collection of selected papers of the III International Conference on Information Technology and Nanotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Collection of selected papers of the III International Conference on Information Technology and Nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18287/1613-0073-2019-2416-87-94\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Collection of selected papers of the III International Conference on Information Technology and Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18287/1613-0073-2019-2416-87-94","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

飞机和火箭发动机的质量主要取决于装配单元和部件的几何精度。以计算机模型形式实现的数学模型用于预测质量指标(特别是装配参数)。用数值共轭和装配体有限元模型直接模拟共轭过程需要大量的计算资源,并且常常伴随着解的收敛性问题。为了解决上述问题,可以利用基于累积结果的神经网络模型来描述配对过程的主要规律。本文提出了一种基于零件实际表面的神经网络模型,用于预测零件的装配参数。考虑了圆锥表面上的装配。采用卷积神经网络对装配参数进行预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural network model in digital prediction of geometric parameters for relative position of the aircraft engine parts
The quality of aircraft and rocket engines depends primarily on the geometric accuracy of assembly units and parts. Mathematical models implemented in the form of computer models are used to predict quality indicators (in particular, assembly parameters). Direct modeling of the conjugation process using numerical conjugation and finite-element models of assemblies requires significant computational resources and is often accompanied by problems convergence of solutions. In order to solve the above problems, it is possible to use neural network models describing the main regularities of the pairing process based on the accumulated results. The work presents a neural network model for predicting assembly parameters of the parts based on the use of actual surfaces of the parts obtained as a result of mathematical modeling. Assembly on conical surfaces is considered. A convolutional neural network was used to predict assembly parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信