{"title":"通过使用预训练的上下文化语言模型进行特别文档排序的标记策略来突出精确匹配","authors":"Lila Boualili, Jose G. Moreno, M. Boughanem","doi":"10.1007/s10791-022-09414-x","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":54352,"journal":{"name":"Information Retrieval Journal","volume":"77 1","pages":"414 - 460"},"PeriodicalIF":1.7000,"publicationDate":"2022-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Highlighting exact matching via marking strategies for ad hoc document ranking with pretrained contextualized language models\",\"authors\":\"Lila Boualili, Jose G. Moreno, M. Boughanem\",\"doi\":\"10.1007/s10791-022-09414-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\",\"PeriodicalId\":54352,\"journal\":{\"name\":\"Information Retrieval Journal\",\"volume\":\"77 1\",\"pages\":\"414 - 460\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Retrieval Journal\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10791-022-09414-x\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Retrieval Journal","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10791-022-09414-x","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
期刊介绍:
The journal provides an international forum for the publication of theory, algorithms, analysis and experiments across the broad area of information retrieval. Topics of interest include search, indexing, analysis, and evaluation for applications such as the web, social and streaming media, recommender systems, and text archives. This includes research on human factors in search, bridging artificial intelligence and information retrieval, and domain-specific search applications.