L. Belanche , J.J. Valdés , J. Comas , I.R. Roda , M. Poch
{"title":"污水处理厂膨胀现象的预测","authors":"L. Belanche , J.J. Valdés , J. Comas , I.R. Roda , M. Poch","doi":"10.1016/S0954-1810(00)00012-1","DOIUrl":null,"url":null,"abstract":"<div><p>The control and prediction of wastewater treatment plants poses an important goal: to avoid breaking the environmental balance by always keeping the system in stable operating conditions. It is known that <em>qualitative</em> information — coming from microscopic examinations and subjective remarks — has a deep influence on the activated sludge process. In particular, on the total amount of effluent suspended solids, one of the measures of overall plant performance. The search for an input–output model of this variable and the prediction of sudden increases (<em>bulking</em> episodes) is thus a central concern to ensure the fulfillment of current discharge limitations. Unfortunately, the strong interrelation between variables, their heterogeneity and the very high amount of missing information makes the use of traditional techniques difficult, or even impossible. Through the combined use of several methods — rough set theory and artificial neural networks, mainly — reasonable prediction models are found, which also serve to show the different importance of variables and provide insight into the process dynamics.</p></div>","PeriodicalId":100123,"journal":{"name":"Artificial Intelligence in Engineering","volume":"14 4","pages":"Pages 307-317"},"PeriodicalIF":0.0000,"publicationDate":"2000-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0954-1810(00)00012-1","citationCount":"44","resultStr":"{\"title\":\"Prediction of the bulking phenomenon in wastewater treatment plants\",\"authors\":\"L. Belanche , J.J. Valdés , J. Comas , I.R. Roda , M. Poch\",\"doi\":\"10.1016/S0954-1810(00)00012-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The control and prediction of wastewater treatment plants poses an important goal: to avoid breaking the environmental balance by always keeping the system in stable operating conditions. It is known that <em>qualitative</em> information — coming from microscopic examinations and subjective remarks — has a deep influence on the activated sludge process. In particular, on the total amount of effluent suspended solids, one of the measures of overall plant performance. The search for an input–output model of this variable and the prediction of sudden increases (<em>bulking</em> episodes) is thus a central concern to ensure the fulfillment of current discharge limitations. Unfortunately, the strong interrelation between variables, their heterogeneity and the very high amount of missing information makes the use of traditional techniques difficult, or even impossible. Through the combined use of several methods — rough set theory and artificial neural networks, mainly — reasonable prediction models are found, which also serve to show the different importance of variables and provide insight into the process dynamics.</p></div>\",\"PeriodicalId\":100123,\"journal\":{\"name\":\"Artificial Intelligence in Engineering\",\"volume\":\"14 4\",\"pages\":\"Pages 307-317\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0954-1810(00)00012-1\",\"citationCount\":\"44\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0954181000000121\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0954181000000121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Prediction of the bulking phenomenon in wastewater treatment plants
The control and prediction of wastewater treatment plants poses an important goal: to avoid breaking the environmental balance by always keeping the system in stable operating conditions. It is known that qualitative information — coming from microscopic examinations and subjective remarks — has a deep influence on the activated sludge process. In particular, on the total amount of effluent suspended solids, one of the measures of overall plant performance. The search for an input–output model of this variable and the prediction of sudden increases (bulking episodes) is thus a central concern to ensure the fulfillment of current discharge limitations. Unfortunately, the strong interrelation between variables, their heterogeneity and the very high amount of missing information makes the use of traditional techniques difficult, or even impossible. Through the combined use of several methods — rough set theory and artificial neural networks, mainly — reasonable prediction models are found, which also serve to show the different importance of variables and provide insight into the process dynamics.