基于CNN的基于LUT算法的LDPC码分类方案分析

B. Comar
{"title":"基于CNN的基于LUT算法的LDPC码分类方案分析","authors":"B. Comar","doi":"10.1109/IEMCON51383.2020.9284950","DOIUrl":null,"url":null,"abstract":"This paper analyzes the performance of an LDPC code classification system that determines membership of code-words among 3 randomly generated binary LDPC codes. These codes all have the same codeword size and coderate. High classification accuracies are obtained with relatively small neural networks. The analysis presented here determines the accuracies of various look up tables and compares them to the performance of the neural networks.","PeriodicalId":6871,"journal":{"name":"2020 11th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)","volume":"34 1","pages":"0492-0497"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of CNN Based Schemes for LDPC Code Classification Using LUT Based Algorithms\",\"authors\":\"B. Comar\",\"doi\":\"10.1109/IEMCON51383.2020.9284950\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper analyzes the performance of an LDPC code classification system that determines membership of code-words among 3 randomly generated binary LDPC codes. These codes all have the same codeword size and coderate. High classification accuracies are obtained with relatively small neural networks. The analysis presented here determines the accuracies of various look up tables and compares them to the performance of the neural networks.\",\"PeriodicalId\":6871,\"journal\":{\"name\":\"2020 11th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)\",\"volume\":\"34 1\",\"pages\":\"0492-0497\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 11th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEMCON51383.2020.9284950\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 11th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMCON51383.2020.9284950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文分析了一种LDPC码分类系统的性能,该系统在随机生成的3个二进制LDPC码中确定码字的隶属度。这些代码都具有相同的码字大小和编码。用相对较小的神经网络就能获得较高的分类精度。本文的分析确定了各种查找表的准确性,并将其与神经网络的性能进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of CNN Based Schemes for LDPC Code Classification Using LUT Based Algorithms
This paper analyzes the performance of an LDPC code classification system that determines membership of code-words among 3 randomly generated binary LDPC codes. These codes all have the same codeword size and coderate. High classification accuracies are obtained with relatively small neural networks. The analysis presented here determines the accuracies of various look up tables and compares them to the performance of the neural networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信