C. Woodcock, Farzad Houshmand, J. Plawsky, M. Izenson, D. Fogg, R. Hill, Scott Phillips, Y. Peles
{"title":"水虎鱼鳍(PPF):通过微通道的蒸汽排气来进行贪婪的沸腾传热-系统校准和单相流体动力学","authors":"C. Woodcock, Farzad Houshmand, J. Plawsky, M. Izenson, D. Fogg, R. Hill, Scott Phillips, Y. Peles","doi":"10.1109/ITHERM.2014.6892294","DOIUrl":null,"url":null,"abstract":"A novel approach to embedded electronics cooling with a multi-phase microfluidic heat sink termed the Piranha Pin-Fin (PPF) is presented. Several first-generation PPF devices, as well as plain-channel and solid pin-fin heat sinks, have been fabricated and experimentally tested under single-phase adiabatic conditions. Details of the PPF device geometry and microfabrication process are provided. Plots showing pressure drop and friction factor are also provided. Numerical fluid dynamics modeling has been performed in parallel to the experiments. Modeling data presented includes fractional flow through the pins, predicted pressure losses, fluid streamlines and velocity gradients under several operating conditions. Additionally, micro-particle image velocimetry (μPIV) measurements have been performed. The velocity fields are used to provide further insight into the fluid mechanics within the heat sink as well as to validate the models. Velocity field measurements are included for various operating conditions.","PeriodicalId":12453,"journal":{"name":"Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)","volume":"134 1","pages":"282-289"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Piranha Pin-Fins (PPF): Voracious boiling heat transfer by vapor venting from microchannels - system calibration and single-phase fluid dynamics\",\"authors\":\"C. Woodcock, Farzad Houshmand, J. Plawsky, M. Izenson, D. Fogg, R. Hill, Scott Phillips, Y. Peles\",\"doi\":\"10.1109/ITHERM.2014.6892294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel approach to embedded electronics cooling with a multi-phase microfluidic heat sink termed the Piranha Pin-Fin (PPF) is presented. Several first-generation PPF devices, as well as plain-channel and solid pin-fin heat sinks, have been fabricated and experimentally tested under single-phase adiabatic conditions. Details of the PPF device geometry and microfabrication process are provided. Plots showing pressure drop and friction factor are also provided. Numerical fluid dynamics modeling has been performed in parallel to the experiments. Modeling data presented includes fractional flow through the pins, predicted pressure losses, fluid streamlines and velocity gradients under several operating conditions. Additionally, micro-particle image velocimetry (μPIV) measurements have been performed. The velocity fields are used to provide further insight into the fluid mechanics within the heat sink as well as to validate the models. Velocity field measurements are included for various operating conditions.\",\"PeriodicalId\":12453,\"journal\":{\"name\":\"Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)\",\"volume\":\"134 1\",\"pages\":\"282-289\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITHERM.2014.6892294\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITHERM.2014.6892294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Piranha Pin-Fins (PPF): Voracious boiling heat transfer by vapor venting from microchannels - system calibration and single-phase fluid dynamics
A novel approach to embedded electronics cooling with a multi-phase microfluidic heat sink termed the Piranha Pin-Fin (PPF) is presented. Several first-generation PPF devices, as well as plain-channel and solid pin-fin heat sinks, have been fabricated and experimentally tested under single-phase adiabatic conditions. Details of the PPF device geometry and microfabrication process are provided. Plots showing pressure drop and friction factor are also provided. Numerical fluid dynamics modeling has been performed in parallel to the experiments. Modeling data presented includes fractional flow through the pins, predicted pressure losses, fluid streamlines and velocity gradients under several operating conditions. Additionally, micro-particle image velocimetry (μPIV) measurements have been performed. The velocity fields are used to provide further insight into the fluid mechanics within the heat sink as well as to validate the models. Velocity field measurements are included for various operating conditions.