{"title":"加密电路的电流通优化对称通门绝热逻辑","authors":"Hiroki Koyasu, Yasuhiro Takahashi","doi":"10.2197/ipsjtsldm.12.50","DOIUrl":null,"url":null,"abstract":"We propose a new adiabatic logic for cryptographic circuits, called as the Current Pass Optimized Symmetric Pass Gate Adiabatic Logic (CPO-SPGAL). The proposed circuit realizes a flat current waveform by considering the current path. The simulation results demonstrate that the proposed circuit can reduce the current fluctuation by approximately 84% and reduce the energy consumption fluctuation by approximately 79% as compared to the existing SPGAL circuits. This shows that it is more resistant to differential power analysis attacks than conventional circuits.","PeriodicalId":38964,"journal":{"name":"IPSJ Transactions on System LSI Design Methodology","volume":"11 1","pages":"50-52"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Current Pass Optimized Symmetric Pass Gate Adiabatic Logic for Cryptographic Circuits\",\"authors\":\"Hiroki Koyasu, Yasuhiro Takahashi\",\"doi\":\"10.2197/ipsjtsldm.12.50\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a new adiabatic logic for cryptographic circuits, called as the Current Pass Optimized Symmetric Pass Gate Adiabatic Logic (CPO-SPGAL). The proposed circuit realizes a flat current waveform by considering the current path. The simulation results demonstrate that the proposed circuit can reduce the current fluctuation by approximately 84% and reduce the energy consumption fluctuation by approximately 79% as compared to the existing SPGAL circuits. This shows that it is more resistant to differential power analysis attacks than conventional circuits.\",\"PeriodicalId\":38964,\"journal\":{\"name\":\"IPSJ Transactions on System LSI Design Methodology\",\"volume\":\"11 1\",\"pages\":\"50-52\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IPSJ Transactions on System LSI Design Methodology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2197/ipsjtsldm.12.50\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IPSJ Transactions on System LSI Design Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2197/ipsjtsldm.12.50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
Current Pass Optimized Symmetric Pass Gate Adiabatic Logic for Cryptographic Circuits
We propose a new adiabatic logic for cryptographic circuits, called as the Current Pass Optimized Symmetric Pass Gate Adiabatic Logic (CPO-SPGAL). The proposed circuit realizes a flat current waveform by considering the current path. The simulation results demonstrate that the proposed circuit can reduce the current fluctuation by approximately 84% and reduce the energy consumption fluctuation by approximately 79% as compared to the existing SPGAL circuits. This shows that it is more resistant to differential power analysis attacks than conventional circuits.