{"title":"来曲唑在CCT纳米管上吸附的研究:DFT/TD-DFT和光谱(激发态和UV/Vis)","authors":"N. Masnabadi","doi":"10.3233/mgc-210098","DOIUrl":null,"url":null,"abstract":"In this research, the geometric structure of LTZ and CCT (5,0) was optimized with B3LYP/6-31G * method using the Gaussian 09W program package to investigate the weak interaction of Letrozole (LTZ) and carbon carbon nanotube (CCT). According to the calculation of the release energy, it was found that the drug delivery process is desirable. Also, the structural properties of the title compounds were assessed by thermodynamic and frontier molecular orbital (FMO) parameters. In this study, a series of measures have been performed to detect changes in drug loading properties and non-bonding interactions between the LTZ and CCT (5,0) nanotube. The non-bonding interaction effects of LTZ and CCT over the electronic properties were also evaluated and argued. The research is based on the fact that studies can help to understand the interaction between the LTZ drug and CCT (5,0) nanotube and the development of CCT-based drug release systems. This research aimed to determine variations in electronic properties of anticancer LTZ drug in presences CCT. Then, the reactivity and stability behavior of LTZ drug and on CCT to be examined by density functional theory (DFT). Then, frontier molecular orbital (FMO) and noncovalent interaction (NCI) analyses were performed, which decrease in reactivity described increase in the stability of LTZ drug.","PeriodicalId":18027,"journal":{"name":"Main Group Chemistry","volume":"70 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The study of Letrozole adsorption upon CCT nanotube: A DFT/TD-DFT and spectroscopic (excited states and UV/Vis)\",\"authors\":\"N. Masnabadi\",\"doi\":\"10.3233/mgc-210098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research, the geometric structure of LTZ and CCT (5,0) was optimized with B3LYP/6-31G * method using the Gaussian 09W program package to investigate the weak interaction of Letrozole (LTZ) and carbon carbon nanotube (CCT). According to the calculation of the release energy, it was found that the drug delivery process is desirable. Also, the structural properties of the title compounds were assessed by thermodynamic and frontier molecular orbital (FMO) parameters. In this study, a series of measures have been performed to detect changes in drug loading properties and non-bonding interactions between the LTZ and CCT (5,0) nanotube. The non-bonding interaction effects of LTZ and CCT over the electronic properties were also evaluated and argued. The research is based on the fact that studies can help to understand the interaction between the LTZ drug and CCT (5,0) nanotube and the development of CCT-based drug release systems. This research aimed to determine variations in electronic properties of anticancer LTZ drug in presences CCT. Then, the reactivity and stability behavior of LTZ drug and on CCT to be examined by density functional theory (DFT). Then, frontier molecular orbital (FMO) and noncovalent interaction (NCI) analyses were performed, which decrease in reactivity described increase in the stability of LTZ drug.\",\"PeriodicalId\":18027,\"journal\":{\"name\":\"Main Group Chemistry\",\"volume\":\"70 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Main Group Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3233/mgc-210098\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Main Group Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3233/mgc-210098","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
The study of Letrozole adsorption upon CCT nanotube: A DFT/TD-DFT and spectroscopic (excited states and UV/Vis)
In this research, the geometric structure of LTZ and CCT (5,0) was optimized with B3LYP/6-31G * method using the Gaussian 09W program package to investigate the weak interaction of Letrozole (LTZ) and carbon carbon nanotube (CCT). According to the calculation of the release energy, it was found that the drug delivery process is desirable. Also, the structural properties of the title compounds were assessed by thermodynamic and frontier molecular orbital (FMO) parameters. In this study, a series of measures have been performed to detect changes in drug loading properties and non-bonding interactions between the LTZ and CCT (5,0) nanotube. The non-bonding interaction effects of LTZ and CCT over the electronic properties were also evaluated and argued. The research is based on the fact that studies can help to understand the interaction between the LTZ drug and CCT (5,0) nanotube and the development of CCT-based drug release systems. This research aimed to determine variations in electronic properties of anticancer LTZ drug in presences CCT. Then, the reactivity and stability behavior of LTZ drug and on CCT to be examined by density functional theory (DFT). Then, frontier molecular orbital (FMO) and noncovalent interaction (NCI) analyses were performed, which decrease in reactivity described increase in the stability of LTZ drug.
期刊介绍:
Main Group Chemistry is intended to be a primary resource for all chemistry, engineering, biological, and materials researchers in both academia and in industry with an interest in the elements from the groups 1, 2, 12–18, lanthanides and actinides. The journal is committed to maintaining a high standard for its publications. This will be ensured by a rigorous peer-review process with most articles being reviewed by at least one editorial board member. Additionally, all manuscripts will be proofread and corrected by a dedicated copy editor located at the University of Kentucky.