横观各向同性材料导热张量的确定

Q1 Mathematics
Jendrik-Alexander Tröger, Stefan Hartmann
{"title":"横观各向同性材料导热张量的确定","authors":"Jendrik-Alexander Tröger,&nbsp;Stefan Hartmann","doi":"10.1002/gamm.202200013","DOIUrl":null,"url":null,"abstract":"<p>The knowledge of the thermal conductivities is of particular interest for the thermo-mechanical modeling of transversely isotropic composite materials. Hence, the identification of these material parameters by solving an inverse problem is significant, as they cannot be directly measured. In this study, a suitable experimental setup is presented, where infrared thermography is used to measure the surface temperatures of thin specimens. Further, a local identifiability concept is employed to study whether locally unique parameters can be obtained. This leads to a particular step-wise identification concept. The parameter identification is performed applying a nonlinear least-square approach and finite elements. In the step-wise identification process the convection coefficient is required first, and, subsequently, the coefficients of the thermal conductivity tensor are determined. Due to the step-wise identification, the uncertainties of previously identified parameters have to be considered in the subsequent identification steps. The resulting uncertainties are estimated using the Gaussian error propagation concept. It turns out that the thermal conductivities of transversely isotropic materials are generally identifiable from surface temperature data. Furthermore, since all uncertainties have an essential influence on the results of real numerical simulations, their error propagation should be considered in resulting boundary-value problems. Thus, the uncertainty quantification is demonstrated by a validation experiment.</p>","PeriodicalId":53634,"journal":{"name":"GAMM Mitteilungen","volume":"45 3-4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gamm.202200013","citationCount":"2","resultStr":"{\"title\":\"Identification of the thermal conductivity tensor for transversely isotropic materials\",\"authors\":\"Jendrik-Alexander Tröger,&nbsp;Stefan Hartmann\",\"doi\":\"10.1002/gamm.202200013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The knowledge of the thermal conductivities is of particular interest for the thermo-mechanical modeling of transversely isotropic composite materials. Hence, the identification of these material parameters by solving an inverse problem is significant, as they cannot be directly measured. In this study, a suitable experimental setup is presented, where infrared thermography is used to measure the surface temperatures of thin specimens. Further, a local identifiability concept is employed to study whether locally unique parameters can be obtained. This leads to a particular step-wise identification concept. The parameter identification is performed applying a nonlinear least-square approach and finite elements. In the step-wise identification process the convection coefficient is required first, and, subsequently, the coefficients of the thermal conductivity tensor are determined. Due to the step-wise identification, the uncertainties of previously identified parameters have to be considered in the subsequent identification steps. The resulting uncertainties are estimated using the Gaussian error propagation concept. It turns out that the thermal conductivities of transversely isotropic materials are generally identifiable from surface temperature data. Furthermore, since all uncertainties have an essential influence on the results of real numerical simulations, their error propagation should be considered in resulting boundary-value problems. Thus, the uncertainty quantification is demonstrated by a validation experiment.</p>\",\"PeriodicalId\":53634,\"journal\":{\"name\":\"GAMM Mitteilungen\",\"volume\":\"45 3-4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gamm.202200013\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GAMM Mitteilungen\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/gamm.202200013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GAMM Mitteilungen","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gamm.202200013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

摘要

热导率的知识对横向各向同性复合材料的热力学建模特别感兴趣。因此,通过求解反问题来识别这些材料参数是重要的,因为它们不能直接测量。在本研究中,提出了一种合适的实验装置,利用红外热像仪测量薄样品的表面温度。在此基础上,引入了局部可辨识性概念,研究了参数能否获得局部唯一。这导致了一种特殊的逐步识别概念。采用非线性最小二乘法和有限元方法进行参数辨识。在逐步识别过程中,首先需要对流系数,然后确定导热张量的系数。由于是分步辨识,在后续辨识步骤中必须考虑先前辨识参数的不确定性。使用高斯误差传播概念估计得到的不确定性。结果表明,横向各向同性材料的热导率一般可由表面温度数据确定。此外,由于所有的不确定性对实际数值模拟的结果都有重要的影响,因此在得到的边值问题中应考虑它们的误差传播。因此,通过验证实验对不确定度的量化进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Identification of the thermal conductivity tensor for transversely isotropic materials

Identification of the thermal conductivity tensor for transversely isotropic materials

The knowledge of the thermal conductivities is of particular interest for the thermo-mechanical modeling of transversely isotropic composite materials. Hence, the identification of these material parameters by solving an inverse problem is significant, as they cannot be directly measured. In this study, a suitable experimental setup is presented, where infrared thermography is used to measure the surface temperatures of thin specimens. Further, a local identifiability concept is employed to study whether locally unique parameters can be obtained. This leads to a particular step-wise identification concept. The parameter identification is performed applying a nonlinear least-square approach and finite elements. In the step-wise identification process the convection coefficient is required first, and, subsequently, the coefficients of the thermal conductivity tensor are determined. Due to the step-wise identification, the uncertainties of previously identified parameters have to be considered in the subsequent identification steps. The resulting uncertainties are estimated using the Gaussian error propagation concept. It turns out that the thermal conductivities of transversely isotropic materials are generally identifiable from surface temperature data. Furthermore, since all uncertainties have an essential influence on the results of real numerical simulations, their error propagation should be considered in resulting boundary-value problems. Thus, the uncertainty quantification is demonstrated by a validation experiment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
GAMM Mitteilungen
GAMM Mitteilungen Mathematics-Applied Mathematics
CiteScore
8.80
自引率
0.00%
发文量
23
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信