{"title":"抽样估计全局子图计数","authors":"S. Janson, Valentas Kurauskas","doi":"10.37236/11618","DOIUrl":null,"url":null,"abstract":"We give a simple proof of a generalization of an inequality for homomorphism counts by Sidorenko (1994). A special case of our inequality says that if $d_v$ denotes the degree of a vertex $v$ in a graph $G$ and $\\textrm{Hom}_\\Delta(H,G)$ denotes the number of homomorphisms from a connected graph $H$ on $h$ vertices to $G$ which map a particular vertex of $H$ to a vertex $v$ in $G$ with $d_v \\ge \\Delta$, then $\\textrm{Hom}_\\Delta(H,G) \\le \\sum_{v\\in G} d_v^{h-1}\\mathbf{1}_{d_v\\ge \\Delta}$. \nWe use this inequality to study the minimum sample size needed to estimate the number of copies of $H$ in $G$ by sampling vertices of $G$ at random.","PeriodicalId":11515,"journal":{"name":"Electronic Journal of Combinatorics","volume":"12 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimating Global Subgraph Counts by Sampling\",\"authors\":\"S. Janson, Valentas Kurauskas\",\"doi\":\"10.37236/11618\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give a simple proof of a generalization of an inequality for homomorphism counts by Sidorenko (1994). A special case of our inequality says that if $d_v$ denotes the degree of a vertex $v$ in a graph $G$ and $\\\\textrm{Hom}_\\\\Delta(H,G)$ denotes the number of homomorphisms from a connected graph $H$ on $h$ vertices to $G$ which map a particular vertex of $H$ to a vertex $v$ in $G$ with $d_v \\\\ge \\\\Delta$, then $\\\\textrm{Hom}_\\\\Delta(H,G) \\\\le \\\\sum_{v\\\\in G} d_v^{h-1}\\\\mathbf{1}_{d_v\\\\ge \\\\Delta}$. \\nWe use this inequality to study the minimum sample size needed to estimate the number of copies of $H$ in $G$ by sampling vertices of $G$ at random.\",\"PeriodicalId\":11515,\"journal\":{\"name\":\"Electronic Journal of Combinatorics\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.37236/11618\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.37236/11618","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
We give a simple proof of a generalization of an inequality for homomorphism counts by Sidorenko (1994). A special case of our inequality says that if $d_v$ denotes the degree of a vertex $v$ in a graph $G$ and $\textrm{Hom}_\Delta(H,G)$ denotes the number of homomorphisms from a connected graph $H$ on $h$ vertices to $G$ which map a particular vertex of $H$ to a vertex $v$ in $G$ with $d_v \ge \Delta$, then $\textrm{Hom}_\Delta(H,G) \le \sum_{v\in G} d_v^{h-1}\mathbf{1}_{d_v\ge \Delta}$.
We use this inequality to study the minimum sample size needed to estimate the number of copies of $H$ in $G$ by sampling vertices of $G$ at random.
期刊介绍:
The Electronic Journal of Combinatorics (E-JC) is a fully-refereed electronic journal with very high standards, publishing papers of substantial content and interest in all branches of discrete mathematics, including combinatorics, graph theory, and algorithms for combinatorial problems.