抽样估计全局子图计数

IF 0.7 4区 数学 Q2 MATHEMATICS
S. Janson, Valentas Kurauskas
{"title":"抽样估计全局子图计数","authors":"S. Janson, Valentas Kurauskas","doi":"10.37236/11618","DOIUrl":null,"url":null,"abstract":"We give a simple proof of a generalization of an inequality for homomorphism counts by Sidorenko (1994). A special case of our inequality says that if $d_v$ denotes the degree of a vertex $v$ in a graph $G$ and $\\textrm{Hom}_\\Delta(H,G)$ denotes the number of homomorphisms from a connected graph $H$ on $h$ vertices to $G$ which map a particular vertex of $H$ to a vertex $v$ in $G$ with $d_v \\ge \\Delta$, then $\\textrm{Hom}_\\Delta(H,G) \\le \\sum_{v\\in G} d_v^{h-1}\\mathbf{1}_{d_v\\ge \\Delta}$. \nWe use this inequality to study the minimum sample size needed to estimate the number of copies of $H$ in $G$ by sampling vertices of $G$ at random.","PeriodicalId":11515,"journal":{"name":"Electronic Journal of Combinatorics","volume":"12 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimating Global Subgraph Counts by Sampling\",\"authors\":\"S. Janson, Valentas Kurauskas\",\"doi\":\"10.37236/11618\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give a simple proof of a generalization of an inequality for homomorphism counts by Sidorenko (1994). A special case of our inequality says that if $d_v$ denotes the degree of a vertex $v$ in a graph $G$ and $\\\\textrm{Hom}_\\\\Delta(H,G)$ denotes the number of homomorphisms from a connected graph $H$ on $h$ vertices to $G$ which map a particular vertex of $H$ to a vertex $v$ in $G$ with $d_v \\\\ge \\\\Delta$, then $\\\\textrm{Hom}_\\\\Delta(H,G) \\\\le \\\\sum_{v\\\\in G} d_v^{h-1}\\\\mathbf{1}_{d_v\\\\ge \\\\Delta}$. \\nWe use this inequality to study the minimum sample size needed to estimate the number of copies of $H$ in $G$ by sampling vertices of $G$ at random.\",\"PeriodicalId\":11515,\"journal\":{\"name\":\"Electronic Journal of Combinatorics\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.37236/11618\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.37236/11618","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们给出了Sidorenko(1994)关于同态计数不等式推广的一个简单证明。我们不等式的一个特殊情况是,如果$d_v$表示图中顶点$v$的度,$G$和$\textrm{Hom}_\Delta(H,G)$表示连接图$H$在$h$上的顶点到$G$的同态数,这些同态数将$H$的特定顶点映射到$G$中的顶点$v$与$d_v \ge \Delta$,则$\textrm{Hom}_\Delta(H,G) \le \sum_{v\in G} d_v^{h-1}\mathbf{1}_{d_v\ge \Delta}$。我们使用这个不等式来研究通过随机采样$G$的顶点来估计$G$中$H$的副本数量所需的最小样本量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimating Global Subgraph Counts by Sampling
We give a simple proof of a generalization of an inequality for homomorphism counts by Sidorenko (1994). A special case of our inequality says that if $d_v$ denotes the degree of a vertex $v$ in a graph $G$ and $\textrm{Hom}_\Delta(H,G)$ denotes the number of homomorphisms from a connected graph $H$ on $h$ vertices to $G$ which map a particular vertex of $H$ to a vertex $v$ in $G$ with $d_v \ge \Delta$, then $\textrm{Hom}_\Delta(H,G) \le \sum_{v\in G} d_v^{h-1}\mathbf{1}_{d_v\ge \Delta}$. We use this inequality to study the minimum sample size needed to estimate the number of copies of $H$ in $G$ by sampling vertices of $G$ at random.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
14.30%
发文量
212
审稿时长
3-6 weeks
期刊介绍: The Electronic Journal of Combinatorics (E-JC) is a fully-refereed electronic journal with very high standards, publishing papers of substantial content and interest in all branches of discrete mathematics, including combinatorics, graph theory, and algorithms for combinatorial problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信