{"title":"基于灰度形态学的方向结构元素加权熵图像边缘检测算法","authors":"Y. Chang, Joon-Ho Cho, Sung-Ryong Moon","doi":"10.22156/CS4SMB.2021.11.02.041","DOIUrl":null,"url":null,"abstract":"The method of the edge detection algorithm based on grayscale mathematical morphology has the advantage that image noise can be removed and processed in parallel, and the operation speed is fast. However, the method of detecting the edge of an image using a single structural scale element may be affected by image information. The characteristics of grayscale morphology may be limited to the edge information result of the operation result by repeatedly performing expansion, erosion, opening, and containment operations by repeating structural elements. In this paper, we propose an edge detection algorithm that applies a structural element with strong directionality to noise and then applies weighted entropy to each pixel information in the element. The result of applying the multi-scale structural element applied to the image and the result of applying the directional weighted entropy were compared and analyzed, and the simulation result showed that the proposed algorithm is superior in edge detection.","PeriodicalId":15438,"journal":{"name":"Journal of Convergence Information Technology","volume":"73 1","pages":"41-46"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Image Edge Detection Algorithm applied Directional Structure Element Weighted Entropy Based on Grayscale Morphology\",\"authors\":\"Y. Chang, Joon-Ho Cho, Sung-Ryong Moon\",\"doi\":\"10.22156/CS4SMB.2021.11.02.041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The method of the edge detection algorithm based on grayscale mathematical morphology has the advantage that image noise can be removed and processed in parallel, and the operation speed is fast. However, the method of detecting the edge of an image using a single structural scale element may be affected by image information. The characteristics of grayscale morphology may be limited to the edge information result of the operation result by repeatedly performing expansion, erosion, opening, and containment operations by repeating structural elements. In this paper, we propose an edge detection algorithm that applies a structural element with strong directionality to noise and then applies weighted entropy to each pixel information in the element. The result of applying the multi-scale structural element applied to the image and the result of applying the directional weighted entropy were compared and analyzed, and the simulation result showed that the proposed algorithm is superior in edge detection.\",\"PeriodicalId\":15438,\"journal\":{\"name\":\"Journal of Convergence Information Technology\",\"volume\":\"73 1\",\"pages\":\"41-46\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Convergence Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22156/CS4SMB.2021.11.02.041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Convergence Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22156/CS4SMB.2021.11.02.041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Image Edge Detection Algorithm applied Directional Structure Element Weighted Entropy Based on Grayscale Morphology
The method of the edge detection algorithm based on grayscale mathematical morphology has the advantage that image noise can be removed and processed in parallel, and the operation speed is fast. However, the method of detecting the edge of an image using a single structural scale element may be affected by image information. The characteristics of grayscale morphology may be limited to the edge information result of the operation result by repeatedly performing expansion, erosion, opening, and containment operations by repeating structural elements. In this paper, we propose an edge detection algorithm that applies a structural element with strong directionality to noise and then applies weighted entropy to each pixel information in the element. The result of applying the multi-scale structural element applied to the image and the result of applying the directional weighted entropy were compared and analyzed, and the simulation result showed that the proposed algorithm is superior in edge detection.