神经退行性临床记录分析仪:检测临床记录中的复发模式,以识别神经退行性疾病史的典型体征

IF 0.2 Q2 Arts and Humanities
JLIS.it Pub Date : 2023-05-15 DOI:10.36253/jlis.it-522
Erika Pasceri, Mérième Bouhandi, C. Lanza, Anna Perri, Valentina Laganà, R. Maletta, R. D. Di Lorenzo, A. Bruni
{"title":"神经退行性临床记录分析仪:检测临床记录中的复发模式,以识别神经退行性疾病史的典型体征","authors":"Erika Pasceri, Mérième Bouhandi, C. Lanza, Anna Perri, Valentina Laganà, R. Maletta, R. D. Di Lorenzo, A. Bruni","doi":"10.36253/jlis.it-522","DOIUrl":null,"url":null,"abstract":"When treating structured health-system-related knowledge, the establishment of an over-dimension to guide the separation of entities becomes essential. This is consistent with the information retrieval processes aimed at defining a coherent and dynamic way – meaning by that the multilevel integration of medical textual inputs and computational interpretation – to replicate the flow of data inserted in the clinical records. This study presents a strategic technique to categorize the clinical entities related to patients affected by neurodegenerative diseases. After a pre-processing range of tasks over paper-based and handwritten medical records, and through subsequent machine learning and, more specifically, natural language processing operations over the digitized clinical records, the research activity provides a semantic support system to detect the main symptoms and locate them in the appropriate clusters. Finally, the supervision of the experts proved to be essential in the correspondence sequence configuration aimed at providing an automatic reading of the clinical records according to the clinical data that is needed to predict the detection of neurodegenerative disease symptoms.","PeriodicalId":42905,"journal":{"name":"JLIS.it","volume":"142 1","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neurodegenerative clinical records analyzer: detection of recurrent patterns within clinical records towards the identification of typical signs of neurodegenerative disease history\",\"authors\":\"Erika Pasceri, Mérième Bouhandi, C. Lanza, Anna Perri, Valentina Laganà, R. Maletta, R. D. Di Lorenzo, A. Bruni\",\"doi\":\"10.36253/jlis.it-522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When treating structured health-system-related knowledge, the establishment of an over-dimension to guide the separation of entities becomes essential. This is consistent with the information retrieval processes aimed at defining a coherent and dynamic way – meaning by that the multilevel integration of medical textual inputs and computational interpretation – to replicate the flow of data inserted in the clinical records. This study presents a strategic technique to categorize the clinical entities related to patients affected by neurodegenerative diseases. After a pre-processing range of tasks over paper-based and handwritten medical records, and through subsequent machine learning and, more specifically, natural language processing operations over the digitized clinical records, the research activity provides a semantic support system to detect the main symptoms and locate them in the appropriate clusters. Finally, the supervision of the experts proved to be essential in the correspondence sequence configuration aimed at providing an automatic reading of the clinical records according to the clinical data that is needed to predict the detection of neurodegenerative disease symptoms.\",\"PeriodicalId\":42905,\"journal\":{\"name\":\"JLIS.it\",\"volume\":\"142 1\",\"pages\":\"\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2023-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JLIS.it\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36253/jlis.it-522\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JLIS.it","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36253/jlis.it-522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 0

摘要

在处理结构化的卫生系统相关知识时,建立一个超维度来指导实体的分离变得至关重要。这与旨在定义连贯和动态方式的信息检索过程是一致的,即医学文本输入和计算解释的多层次集成,以复制插入临床记录中的数据流。本研究提出一种策略性的技术来分类与神经退行性疾病患者相关的临床实体。在对纸质和手写医疗记录进行一系列预处理任务后,通过随后的机器学习,更具体地说,通过对数字化临床记录进行自然语言处理操作,研究活动提供了一个语义支持系统,以检测主要症状并将其定位在适当的集群中。最后,专家的监督被证明在对应序列配置中是必不可少的,该配置旨在根据预测神经退行性疾病症状检测所需的临床数据提供临床记录的自动读取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neurodegenerative clinical records analyzer: detection of recurrent patterns within clinical records towards the identification of typical signs of neurodegenerative disease history
When treating structured health-system-related knowledge, the establishment of an over-dimension to guide the separation of entities becomes essential. This is consistent with the information retrieval processes aimed at defining a coherent and dynamic way – meaning by that the multilevel integration of medical textual inputs and computational interpretation – to replicate the flow of data inserted in the clinical records. This study presents a strategic technique to categorize the clinical entities related to patients affected by neurodegenerative diseases. After a pre-processing range of tasks over paper-based and handwritten medical records, and through subsequent machine learning and, more specifically, natural language processing operations over the digitized clinical records, the research activity provides a semantic support system to detect the main symptoms and locate them in the appropriate clusters. Finally, the supervision of the experts proved to be essential in the correspondence sequence configuration aimed at providing an automatic reading of the clinical records according to the clinical data that is needed to predict the detection of neurodegenerative disease symptoms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
JLIS.it
JLIS.it INFORMATION SCIENCE & LIBRARY SCIENCE-
CiteScore
0.80
自引率
0.00%
发文量
16
审稿时长
12 weeks
期刊介绍: JLIS.it is an academic journal of international scope, peer-reviewed and open access, aiming to valorise international research in Library and Information Science. Contributions in LIS, Library and Information Science, are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信