增量多类开集音频识别

H. Jleed, M. Bouchard
{"title":"增量多类开集音频识别","authors":"H. Jleed, M. Bouchard","doi":"10.26555/ijain.v8i2.812","DOIUrl":null,"url":null,"abstract":"Incremental learning aims to learn new classes if they emerge while maintaining the performance for previously known classes. It acquires useful information from incoming data to update the existing models. Open-set recognition, however, requires the ability to recognize examples from known classes and reject examples from new/unknown classes. There are two main challenges in this matter. First, new class discovery: the algorithm needs to not only recognize known classes but it must also detect unknown classes. Second, model extension: after the new classes are identified, the model needs to be updated. Focusing on this matter, we introduce incremental open-set multiclass support vector machine algorithms that can classify examples from seen/unseen classes, using incremental learning to increase the current model with new classes without entirely retraining the system. Comprehensive evaluations are carried out on both open set recognition and incremental learning. For open-set recognition, we adopt the openness test that examines the effectiveness of a varying number of known/unknown labels. For incremental learning, we adapt the model to detect a single novel class in each incremental phase and update the model with unknown classes. Experimental results show promising performance for the proposed methods, compared with some representative previous methods.","PeriodicalId":52195,"journal":{"name":"International Journal of Advances in Intelligent Informatics","volume":"185 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Incremental multiclass open-set audio recognition\",\"authors\":\"H. Jleed, M. Bouchard\",\"doi\":\"10.26555/ijain.v8i2.812\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Incremental learning aims to learn new classes if they emerge while maintaining the performance for previously known classes. It acquires useful information from incoming data to update the existing models. Open-set recognition, however, requires the ability to recognize examples from known classes and reject examples from new/unknown classes. There are two main challenges in this matter. First, new class discovery: the algorithm needs to not only recognize known classes but it must also detect unknown classes. Second, model extension: after the new classes are identified, the model needs to be updated. Focusing on this matter, we introduce incremental open-set multiclass support vector machine algorithms that can classify examples from seen/unseen classes, using incremental learning to increase the current model with new classes without entirely retraining the system. Comprehensive evaluations are carried out on both open set recognition and incremental learning. For open-set recognition, we adopt the openness test that examines the effectiveness of a varying number of known/unknown labels. For incremental learning, we adapt the model to detect a single novel class in each incremental phase and update the model with unknown classes. Experimental results show promising performance for the proposed methods, compared with some representative previous methods.\",\"PeriodicalId\":52195,\"journal\":{\"name\":\"International Journal of Advances in Intelligent Informatics\",\"volume\":\"185 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advances in Intelligent Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26555/ijain.v8i2.812\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advances in Intelligent Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26555/ijain.v8i2.812","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

增量学习的目的是学习新出现的类,同时保持以前已知类的性能。它从输入的数据中获取有用的信息来更新现有的模型。然而,开放集识别要求能够识别来自已知类的示例并拒绝来自新/未知类的示例。在这个问题上有两个主要的挑战。首先,新类发现:算法不仅要识别已知类,还要检测未知类。第二,模型扩展:在识别新类之后,需要更新模型。专注于这个问题,我们引入了增量开集多类支持向量机算法,该算法可以从可见/未见类中分类示例,使用增量学习用新类增加当前模型,而无需完全重新训练系统。对开放集识别和增量学习进行了综合评价。对于开放集识别,我们采用开放性测试来检验不同数量的已知/未知标签的有效性。对于增量学习,我们调整模型以在每个增量阶段检测单个新类,并用未知类更新模型。实验结果表明,该方法与已有的一些代表性方法相比,具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Incremental multiclass open-set audio recognition
Incremental learning aims to learn new classes if they emerge while maintaining the performance for previously known classes. It acquires useful information from incoming data to update the existing models. Open-set recognition, however, requires the ability to recognize examples from known classes and reject examples from new/unknown classes. There are two main challenges in this matter. First, new class discovery: the algorithm needs to not only recognize known classes but it must also detect unknown classes. Second, model extension: after the new classes are identified, the model needs to be updated. Focusing on this matter, we introduce incremental open-set multiclass support vector machine algorithms that can classify examples from seen/unseen classes, using incremental learning to increase the current model with new classes without entirely retraining the system. Comprehensive evaluations are carried out on both open set recognition and incremental learning. For open-set recognition, we adopt the openness test that examines the effectiveness of a varying number of known/unknown labels. For incremental learning, we adapt the model to detect a single novel class in each incremental phase and update the model with unknown classes. Experimental results show promising performance for the proposed methods, compared with some representative previous methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Advances in Intelligent Informatics
International Journal of Advances in Intelligent Informatics Computer Science-Computer Vision and Pattern Recognition
CiteScore
3.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信