{"title":"双连杆柔性机械臂的实时模糊逻辑控制","authors":"J. Pedro, Juan-Paul Hynek","doi":"10.3844/jmrsp.2023.48.62","DOIUrl":null,"url":null,"abstract":": This study investigates the development of a Fuzzy Logic Controller (FLC) for tracking a sinusoidal wave trajectory and suppressing the vibration of a Two Link Flexible Manipulator (TLFM). The TLFM was modeled using Lagrange's formalism and the Assumed Mode Method (AMM). A three-part apparatus consisting of a TLFM mathematical model, a real-world TLFM, and control software was designed and implemented. The FLC was applied to both the simulated and real-world TLFM. The robustness of the FLC was investigated by considering variable payload mass and link angular velocity in both constructive and destructive link interference trajectory cases. Simulation and experimental results show the effectiveness and robustness of the proposed FLC.","PeriodicalId":51661,"journal":{"name":"Journal of Robotics and Mechatronics","volume":"2008 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real-Time Fuzzy Logic Control of Two-Link Flexible Manipulators\",\"authors\":\"J. Pedro, Juan-Paul Hynek\",\"doi\":\"10.3844/jmrsp.2023.48.62\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": This study investigates the development of a Fuzzy Logic Controller (FLC) for tracking a sinusoidal wave trajectory and suppressing the vibration of a Two Link Flexible Manipulator (TLFM). The TLFM was modeled using Lagrange's formalism and the Assumed Mode Method (AMM). A three-part apparatus consisting of a TLFM mathematical model, a real-world TLFM, and control software was designed and implemented. The FLC was applied to both the simulated and real-world TLFM. The robustness of the FLC was investigated by considering variable payload mass and link angular velocity in both constructive and destructive link interference trajectory cases. Simulation and experimental results show the effectiveness and robustness of the proposed FLC.\",\"PeriodicalId\":51661,\"journal\":{\"name\":\"Journal of Robotics and Mechatronics\",\"volume\":\"2008 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Robotics and Mechatronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3844/jmrsp.2023.48.62\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Robotics and Mechatronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3844/jmrsp.2023.48.62","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ROBOTICS","Score":null,"Total":0}
Real-Time Fuzzy Logic Control of Two-Link Flexible Manipulators
: This study investigates the development of a Fuzzy Logic Controller (FLC) for tracking a sinusoidal wave trajectory and suppressing the vibration of a Two Link Flexible Manipulator (TLFM). The TLFM was modeled using Lagrange's formalism and the Assumed Mode Method (AMM). A three-part apparatus consisting of a TLFM mathematical model, a real-world TLFM, and control software was designed and implemented. The FLC was applied to both the simulated and real-world TLFM. The robustness of the FLC was investigated by considering variable payload mass and link angular velocity in both constructive and destructive link interference trajectory cases. Simulation and experimental results show the effectiveness and robustness of the proposed FLC.
期刊介绍:
First published in 1989, the Journal of Robotics and Mechatronics (JRM) has the longest publication history in the world in this field, publishing a total of over 2,000 works exclusively on robotics and mechatronics from the first number. The Journal publishes academic papers, development reports, reviews, letters, notes, and discussions. The JRM is a peer-reviewed journal in fields such as robotics, mechatronics, automation, and system integration. Its editorial board includes wellestablished researchers and engineers in the field from the world over. The scope of the journal includes any and all topics on robotics and mechatronics. As a key technology in robotics and mechatronics, it includes actuator design, motion control, sensor design, sensor fusion, sensor networks, robot vision, audition, mechanism design, robot kinematics and dynamics, mobile robot, path planning, navigation, SLAM, robot hand, manipulator, nano/micro robot, humanoid, service and home robots, universal design, middleware, human-robot interaction, human interface, networked robotics, telerobotics, ubiquitous robot, learning, and intelligence. The scope also includes applications of robotics and automation, and system integrations in the fields of manufacturing, construction, underwater, space, agriculture, sustainability, energy conservation, ecology, rescue, hazardous environments, safety and security, dependability, medical, and welfare.