{"title":"具有对合的半群上一类新的两变量泛函方程","authors":"Iz-iddine El-Fassi","doi":"10.1515/anly-2022-1071","DOIUrl":null,"url":null,"abstract":"Abstract Let 𝑆 be a commutative semigroup, 𝐾 a quadratically closed commutative field of characteristic different from 2, 𝐺 a 2-cancellative abelian group and 𝐻 an abelian group uniquely divisible by 2. The goal of this paper is to find the general non-zero solution f : S 2 → K f\\colon S^{2}\\to K of the d’Alembert type equation f ( x + y , z + w ) + f ( x + σ ( y ) , z + τ ( w ) ) = 2 f ( x , z ) f ( y , w ) , x , y , z , w ∈ S , f(x+y,z+w)+f(x+\\sigma(y),z+\\tau(w))=2f(x,z)f(y,w),\\quad x,y,z,w\\in S, the general non-zero solution f : S 2 → G f\\colon S^{2}\\to G of the Jensen type equation f ( x + y , z + w ) + f ( x + σ ( y ) , z + τ ( w ) ) = 2 f ( x , z ) , x , y , z , w ∈ S , f(x+y,z+w)+f(x+\\sigma(y),z+\\tau(w))=2f(x,z),\\quad x,y,z,w\\in S, the general non-zero solution f : S 2 → H f\\colon S^{2}\\to H of the quadratic type equation f ( x + y , z + w ) + f ( x + σ ( y ) , z + τ ( w ) ) = 2 f ( x , z ) + 2 f ( y , w ) , x , y , z , w ∈ S , f(x+y,z+w)+f(x+\\sigma(y),z+\\tau(w))=2f(x,z)+2f(y,w),\\quad x,y,z,w\\in S, where σ , τ : S → S \\sigma,\\tau\\colon S\\to S are two involutions.","PeriodicalId":82310,"journal":{"name":"Philosophic research and analysis","volume":"52 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a new class of two-variable functional equations on semigroups with involutions\",\"authors\":\"Iz-iddine El-Fassi\",\"doi\":\"10.1515/anly-2022-1071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let 𝑆 be a commutative semigroup, 𝐾 a quadratically closed commutative field of characteristic different from 2, 𝐺 a 2-cancellative abelian group and 𝐻 an abelian group uniquely divisible by 2. The goal of this paper is to find the general non-zero solution f : S 2 → K f\\\\colon S^{2}\\\\to K of the d’Alembert type equation f ( x + y , z + w ) + f ( x + σ ( y ) , z + τ ( w ) ) = 2 f ( x , z ) f ( y , w ) , x , y , z , w ∈ S , f(x+y,z+w)+f(x+\\\\sigma(y),z+\\\\tau(w))=2f(x,z)f(y,w),\\\\quad x,y,z,w\\\\in S, the general non-zero solution f : S 2 → G f\\\\colon S^{2}\\\\to G of the Jensen type equation f ( x + y , z + w ) + f ( x + σ ( y ) , z + τ ( w ) ) = 2 f ( x , z ) , x , y , z , w ∈ S , f(x+y,z+w)+f(x+\\\\sigma(y),z+\\\\tau(w))=2f(x,z),\\\\quad x,y,z,w\\\\in S, the general non-zero solution f : S 2 → H f\\\\colon S^{2}\\\\to H of the quadratic type equation f ( x + y , z + w ) + f ( x + σ ( y ) , z + τ ( w ) ) = 2 f ( x , z ) + 2 f ( y , w ) , x , y , z , w ∈ S , f(x+y,z+w)+f(x+\\\\sigma(y),z+\\\\tau(w))=2f(x,z)+2f(y,w),\\\\quad x,y,z,w\\\\in S, where σ , τ : S → S \\\\sigma,\\\\tau\\\\colon S\\\\to S are two involutions.\",\"PeriodicalId\":82310,\"journal\":{\"name\":\"Philosophic research and analysis\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophic research and analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/anly-2022-1071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophic research and analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/anly-2022-1071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
设𝑆是一个交换半群,𝐾是一个特征不同于2的二次闭交换域,𝐺是一个2可消的阿贝尔群,𝐻是一个唯一可被2整除的阿贝尔群。本文的目的是找出一般的非零解f: s2→kf\colon s ^{2}\to d 'Alembert型方程f _ (x+y,z+w)+f _ (x+ σ _ (y),z+ τ _ (w))的K = 2 _ f _ (x,z) _ f _ (y, w), x, y,z, w∈S, f(x+y,z+w)+f(x+ w\sigma(y) z+\tau(w) =2f(x,z)f(y,w),\quad x y z w\in S,一般非零解f: s2→gf\colon s ^{2}\to Jensen型方程f减去(x+y,z+w)+f减去(x+ σ减去(y),z+ τ减去(w))的G = 2减去f减去(x,z), x, y,z, w∈S, f(x+y,z+w)+f(x+\sigma(y) z+\tau(w))=2f(x,z),\quad x y z w\in S,一般非零解f: s2→H f\colon s ^{2}\to 二次型方程f _ (x+y,z+w)+f _ (x+ σ _ (y),z+ τ _ (w))的H = 2 _ f _ (x,z)+ 2 _ f _ (y, w), x, y,z, w∈S, f(x+y,z+w)+f(x+ w)+\sigma(y) z+\tau(w) =2f(x,z)+2f(y,w),\quad x y z w\in S,其中σ, τ: S→S \sigma,\tau\colon s\to S是两个对合。
On a new class of two-variable functional equations on semigroups with involutions
Abstract Let 𝑆 be a commutative semigroup, 𝐾 a quadratically closed commutative field of characteristic different from 2, 𝐺 a 2-cancellative abelian group and 𝐻 an abelian group uniquely divisible by 2. The goal of this paper is to find the general non-zero solution f : S 2 → K f\colon S^{2}\to K of the d’Alembert type equation f ( x + y , z + w ) + f ( x + σ ( y ) , z + τ ( w ) ) = 2 f ( x , z ) f ( y , w ) , x , y , z , w ∈ S , f(x+y,z+w)+f(x+\sigma(y),z+\tau(w))=2f(x,z)f(y,w),\quad x,y,z,w\in S, the general non-zero solution f : S 2 → G f\colon S^{2}\to G of the Jensen type equation f ( x + y , z + w ) + f ( x + σ ( y ) , z + τ ( w ) ) = 2 f ( x , z ) , x , y , z , w ∈ S , f(x+y,z+w)+f(x+\sigma(y),z+\tau(w))=2f(x,z),\quad x,y,z,w\in S, the general non-zero solution f : S 2 → H f\colon S^{2}\to H of the quadratic type equation f ( x + y , z + w ) + f ( x + σ ( y ) , z + τ ( w ) ) = 2 f ( x , z ) + 2 f ( y , w ) , x , y , z , w ∈ S , f(x+y,z+w)+f(x+\sigma(y),z+\tau(w))=2f(x,z)+2f(y,w),\quad x,y,z,w\in S, where σ , τ : S → S \sigma,\tau\colon S\to S are two involutions.