Shiqi Wu, Bo Wang, Jianxiang Zhao, Mengnan Zhao, Kun Zhong, Yanqing Guo
{"title":"基于虚拟样本生成和集成学习的小训练样本图像源识别","authors":"Shiqi Wu, Bo Wang, Jianxiang Zhao, Mengnan Zhao, Kun Zhong, Yanqing Guo","doi":"10.4018/IJDCF.20210501.OA3","DOIUrl":null,"url":null,"abstract":"Nowadays, source camera identification, which aims to identify the source camera of images, is quite important in the field of forensics. There is a problem that cannot be ignored that the existing methods are unreliable and even out of work in the case of the small training sample. To solve this problem, a virtual sample generation-based method is proposed in this paper, combined with the ensemble learning. In this paper, after constructing sub-sets of LBP features, the authors generate a virtual sample-based on the mega-trend-diffusion (MTD) method, which calculates the diffusion range of samples according to the trend diffusion theory, and then randomly generates virtual sample according to uniform distribution within this range. In the aspect of the classifier, an ensemble learning scheme is proposed to train multiple SVM-based classifiers to improve the accuracy of image source identification. The experimental results demonstrate that the proposed method achieves higher average accuracy than the state-of-the-art, which uses a small number of samples as the training sample set.","PeriodicalId":44650,"journal":{"name":"International Journal of Digital Crime and Forensics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Virtual Sample Generation and Ensemble Learning Based Image Source Identification With Small Training Samples\",\"authors\":\"Shiqi Wu, Bo Wang, Jianxiang Zhao, Mengnan Zhao, Kun Zhong, Yanqing Guo\",\"doi\":\"10.4018/IJDCF.20210501.OA3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, source camera identification, which aims to identify the source camera of images, is quite important in the field of forensics. There is a problem that cannot be ignored that the existing methods are unreliable and even out of work in the case of the small training sample. To solve this problem, a virtual sample generation-based method is proposed in this paper, combined with the ensemble learning. In this paper, after constructing sub-sets of LBP features, the authors generate a virtual sample-based on the mega-trend-diffusion (MTD) method, which calculates the diffusion range of samples according to the trend diffusion theory, and then randomly generates virtual sample according to uniform distribution within this range. In the aspect of the classifier, an ensemble learning scheme is proposed to train multiple SVM-based classifiers to improve the accuracy of image source identification. The experimental results demonstrate that the proposed method achieves higher average accuracy than the state-of-the-art, which uses a small number of samples as the training sample set.\",\"PeriodicalId\":44650,\"journal\":{\"name\":\"International Journal of Digital Crime and Forensics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Digital Crime and Forensics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJDCF.20210501.OA3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Digital Crime and Forensics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJDCF.20210501.OA3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Virtual Sample Generation and Ensemble Learning Based Image Source Identification With Small Training Samples
Nowadays, source camera identification, which aims to identify the source camera of images, is quite important in the field of forensics. There is a problem that cannot be ignored that the existing methods are unreliable and even out of work in the case of the small training sample. To solve this problem, a virtual sample generation-based method is proposed in this paper, combined with the ensemble learning. In this paper, after constructing sub-sets of LBP features, the authors generate a virtual sample-based on the mega-trend-diffusion (MTD) method, which calculates the diffusion range of samples according to the trend diffusion theory, and then randomly generates virtual sample according to uniform distribution within this range. In the aspect of the classifier, an ensemble learning scheme is proposed to train multiple SVM-based classifiers to improve the accuracy of image source identification. The experimental results demonstrate that the proposed method achieves higher average accuracy than the state-of-the-art, which uses a small number of samples as the training sample set.