{"title":"SoK:面向微分概率和线性相关性的大s盒建模(长论文)","authors":"Ling Sun, Meiqin Wang","doi":"10.46586/tosc.v2023.i1.111-151","DOIUrl":null,"url":null,"abstract":"Automatic methods for differential and linear characteristic search are well-established at the moment. Typically, the designers of novel ciphers also give preliminary analytical findings for analysing the differential and linear properties using automatic techniques. However, neither MILP-based nor SAT/SMT-based approaches have fully resolved the problem of searching for actual differential and linear characteristics of ciphers with large S-boxes. To tackle the issue, we present three strategies for developing SAT models for 8-bit S-boxes that are geared toward differential probabilities and linear correlations. While these approaches cannot guarantee a minimum model size, the time needed to obtain models is drastically reduced. The newly proposed SAT model for large S-boxes enables us to establish that the upper bound on the differential probability for 14 rounds of SKINNY-128 is 2−131, thereby completing the unsuccessful work of Abdelkhalek et al. We also analyse the seven AES-based constructions C1 - C7 designed by Jean and Nikolić and compute the minimum number of active S-boxes necessary to cause an internal collision using the SAT method. For two constructions C3 and C5, the current lower bound on the number of active S-boxes is increased, resulting in a more precise security analysis for these two structures.","PeriodicalId":37077,"journal":{"name":"IACR Transactions on Symmetric Cryptology","volume":"3 1","pages":"111-151"},"PeriodicalIF":1.7000,"publicationDate":"2023-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"SoK: Modeling for Large S-boxes Oriented to Differential Probabilities and Linear Correlations (Long Paper)\",\"authors\":\"Ling Sun, Meiqin Wang\",\"doi\":\"10.46586/tosc.v2023.i1.111-151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic methods for differential and linear characteristic search are well-established at the moment. Typically, the designers of novel ciphers also give preliminary analytical findings for analysing the differential and linear properties using automatic techniques. However, neither MILP-based nor SAT/SMT-based approaches have fully resolved the problem of searching for actual differential and linear characteristics of ciphers with large S-boxes. To tackle the issue, we present three strategies for developing SAT models for 8-bit S-boxes that are geared toward differential probabilities and linear correlations. While these approaches cannot guarantee a minimum model size, the time needed to obtain models is drastically reduced. The newly proposed SAT model for large S-boxes enables us to establish that the upper bound on the differential probability for 14 rounds of SKINNY-128 is 2−131, thereby completing the unsuccessful work of Abdelkhalek et al. We also analyse the seven AES-based constructions C1 - C7 designed by Jean and Nikolić and compute the minimum number of active S-boxes necessary to cause an internal collision using the SAT method. For two constructions C3 and C5, the current lower bound on the number of active S-boxes is increased, resulting in a more precise security analysis for these two structures.\",\"PeriodicalId\":37077,\"journal\":{\"name\":\"IACR Transactions on Symmetric Cryptology\",\"volume\":\"3 1\",\"pages\":\"111-151\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IACR Transactions on Symmetric Cryptology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46586/tosc.v2023.i1.111-151\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IACR Transactions on Symmetric Cryptology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46586/tosc.v2023.i1.111-151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
SoK: Modeling for Large S-boxes Oriented to Differential Probabilities and Linear Correlations (Long Paper)
Automatic methods for differential and linear characteristic search are well-established at the moment. Typically, the designers of novel ciphers also give preliminary analytical findings for analysing the differential and linear properties using automatic techniques. However, neither MILP-based nor SAT/SMT-based approaches have fully resolved the problem of searching for actual differential and linear characteristics of ciphers with large S-boxes. To tackle the issue, we present three strategies for developing SAT models for 8-bit S-boxes that are geared toward differential probabilities and linear correlations. While these approaches cannot guarantee a minimum model size, the time needed to obtain models is drastically reduced. The newly proposed SAT model for large S-boxes enables us to establish that the upper bound on the differential probability for 14 rounds of SKINNY-128 is 2−131, thereby completing the unsuccessful work of Abdelkhalek et al. We also analyse the seven AES-based constructions C1 - C7 designed by Jean and Nikolić and compute the minimum number of active S-boxes necessary to cause an internal collision using the SAT method. For two constructions C3 and C5, the current lower bound on the number of active S-boxes is increased, resulting in a more precise security analysis for these two structures.