一致空间的共反射子范畴的生产力

Miroslav Hušek, Michael D. Rice
{"title":"一致空间的共反射子范畴的生产力","authors":"Miroslav Hušek,&nbsp;Michael D. Rice","doi":"10.1016/0016-660X(78)90033-8","DOIUrl":null,"url":null,"abstract":"<div><p>Using the fact that each product of uniform quotient mappings is a quotient mapping, new conditions are given for the finite and countable productivity of a coreflective sub-class of uniform spaces. Three basis examples of productive coreflective sub-classes are constructed (connected with products of discrete spaces, proximally fine spaces, and uniformly sequentially continuous mappings) and the coreflective hull of metric spaces is shown to be productive if and only if there exists no uniformly sequential cardinal number.</p></div>","PeriodicalId":100574,"journal":{"name":"General Topology and its Applications","volume":"9 3","pages":"Pages 295-306"},"PeriodicalIF":0.0000,"publicationDate":"1978-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0016-660X(78)90033-8","citationCount":"23","resultStr":"{\"title\":\"Productivity of coreflective subcategories of uniform spaces\",\"authors\":\"Miroslav Hušek,&nbsp;Michael D. Rice\",\"doi\":\"10.1016/0016-660X(78)90033-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Using the fact that each product of uniform quotient mappings is a quotient mapping, new conditions are given for the finite and countable productivity of a coreflective sub-class of uniform spaces. Three basis examples of productive coreflective sub-classes are constructed (connected with products of discrete spaces, proximally fine spaces, and uniformly sequentially continuous mappings) and the coreflective hull of metric spaces is shown to be productive if and only if there exists no uniformly sequential cardinal number.</p></div>\",\"PeriodicalId\":100574,\"journal\":{\"name\":\"General Topology and its Applications\",\"volume\":\"9 3\",\"pages\":\"Pages 295-306\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1978-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0016-660X(78)90033-8\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"General Topology and its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/0016660X78900338\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"General Topology and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0016660X78900338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

利用一致商映射的每一个乘积都是一个商映射的事实,给出了一致空间的共反射子类的有限可数生产力的新条件。构造了三个可产共反射子类的基本例子(与离散空间、近精细空间和一致顺序连续映射的积相连接),并证明了度量空间的共反射壳当且仅当不存在一致顺序基数时是可产的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Productivity of coreflective subcategories of uniform spaces

Using the fact that each product of uniform quotient mappings is a quotient mapping, new conditions are given for the finite and countable productivity of a coreflective sub-class of uniform spaces. Three basis examples of productive coreflective sub-classes are constructed (connected with products of discrete spaces, proximally fine spaces, and uniformly sequentially continuous mappings) and the coreflective hull of metric spaces is shown to be productive if and only if there exists no uniformly sequential cardinal number.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信