{"title":"La2O3掺杂各向同性Ba-M铁氧体的合成、结构和磁性能研究","authors":"Zubair Ahmad","doi":"10.31031/rdms.2020.13.000825","DOIUrl":null,"url":null,"abstract":"Present work reports the synthesis, structural and magnetic properties of BaFe 11 O 17.5 and La 2 O 3 doped (Ba La 0.05 Fe 11 O 17.575 , BaLa 0.1 Fe 11 O 17.65 , BaLa 0.2 Fe 11 O 17.80 and BaLa 0.3 Fe 11 O 17.95 ) ferrites produced through powder metallurgy method with escalated magnetic properties. Phase evaluation, crystal structure, microstructure, and magnetic properties thermomagnetic characteristics for the La doped and La free ferrites have been investigated at varying sintered temperatures. XRD studies revealed that BaFe 12 O 19 phase is formed at 900 ̊C through the reaction of Fe 2 O 3 and BaFe 2 O 4 . Electron microscopy studies elucidated that microstructural features depend critically on the heat treatment conditions as well as La content. La addition up to 1.0 mole found to be beneficial to refine particle size close to single domain wall size, which, in turn, led to enhance magnetic properties of the ferrite. Optimum magnetic properties for the La free BaFe 11 O 17.5 are H c =4.4kOe, B r =1.9kG, and (BH) max =0.85MGOe which were improved to H c =4.9kOe, B r =2.4kG and (BH) max =1.2MGOe with La 2 O 3 additive. The La 2 O 3 acts as a grain growth inhibitor and led to enhance high coercivity of 4.9kOe in the ferrite. The dielectric constant and dielectric loss factor decrease monotonically with increasing applied frequency at the constant temperature. Permeability is found to be sensitive to density and microstructural components like grain size and porosity of the sintered ferrites.","PeriodicalId":20943,"journal":{"name":"Research & Development in Material Science","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Study on Synthesis, Structural and Magnetic Properties of La2O3 Doped Isotropic Ba-M Ferrites\",\"authors\":\"Zubair Ahmad\",\"doi\":\"10.31031/rdms.2020.13.000825\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Present work reports the synthesis, structural and magnetic properties of BaFe 11 O 17.5 and La 2 O 3 doped (Ba La 0.05 Fe 11 O 17.575 , BaLa 0.1 Fe 11 O 17.65 , BaLa 0.2 Fe 11 O 17.80 and BaLa 0.3 Fe 11 O 17.95 ) ferrites produced through powder metallurgy method with escalated magnetic properties. Phase evaluation, crystal structure, microstructure, and magnetic properties thermomagnetic characteristics for the La doped and La free ferrites have been investigated at varying sintered temperatures. XRD studies revealed that BaFe 12 O 19 phase is formed at 900 ̊C through the reaction of Fe 2 O 3 and BaFe 2 O 4 . Electron microscopy studies elucidated that microstructural features depend critically on the heat treatment conditions as well as La content. La addition up to 1.0 mole found to be beneficial to refine particle size close to single domain wall size, which, in turn, led to enhance magnetic properties of the ferrite. Optimum magnetic properties for the La free BaFe 11 O 17.5 are H c =4.4kOe, B r =1.9kG, and (BH) max =0.85MGOe which were improved to H c =4.9kOe, B r =2.4kG and (BH) max =1.2MGOe with La 2 O 3 additive. The La 2 O 3 acts as a grain growth inhibitor and led to enhance high coercivity of 4.9kOe in the ferrite. The dielectric constant and dielectric loss factor decrease monotonically with increasing applied frequency at the constant temperature. Permeability is found to be sensitive to density and microstructural components like grain size and porosity of the sintered ferrites.\",\"PeriodicalId\":20943,\"journal\":{\"name\":\"Research & Development in Material Science\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research & Development in Material Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31031/rdms.2020.13.000825\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research & Development in Material Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31031/rdms.2020.13.000825","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本文报道了用粉末冶金法制备的BaFe 11o 17.5和La 2o3掺杂铁氧体(Ba La 0.05 Fe 11o 17.575, BaLa 0.1 Fe 11o 17.65, BaLa 0.2 Fe 11o 17.80和BaLa 0.3 Fe 11o 17.95)的合成、结构和磁性能的提高。研究了不同烧结温度下掺La和自由La铁氧体的物相评价、晶体结构、微观结构和磁性能。XRD研究表明,在900℃下,fe2o3与baf2o4反应形成了baf12o19相。电镜研究表明,热处理条件和La含量决定了合金的显微组织特征。添加1.0摩尔的La有利于细化颗粒尺寸,使其接近单畴壁尺寸,从而提高铁氧体的磁性能。无La bafe11o17.5的最佳磁性能为H c =4.4kOe, B r =1.9kG, (BH) max =0.85MGOe,添加La 2o3后可将其磁性能提高到H c =4.9kOe, B r =2.4kG, (BH) max =1.2MGOe。la2o3作为晶粒生长抑制剂,提高了铁素体的高矫顽力(4.9kOe)。在恒定温度下,介电常数和介电损耗因子随外加频率的增加而单调减小。磁导率对烧结铁氧体的密度和晶粒尺寸、孔隙率等微观结构成分很敏感。
A Study on Synthesis, Structural and Magnetic Properties of La2O3 Doped Isotropic Ba-M Ferrites
Present work reports the synthesis, structural and magnetic properties of BaFe 11 O 17.5 and La 2 O 3 doped (Ba La 0.05 Fe 11 O 17.575 , BaLa 0.1 Fe 11 O 17.65 , BaLa 0.2 Fe 11 O 17.80 and BaLa 0.3 Fe 11 O 17.95 ) ferrites produced through powder metallurgy method with escalated magnetic properties. Phase evaluation, crystal structure, microstructure, and magnetic properties thermomagnetic characteristics for the La doped and La free ferrites have been investigated at varying sintered temperatures. XRD studies revealed that BaFe 12 O 19 phase is formed at 900 ̊C through the reaction of Fe 2 O 3 and BaFe 2 O 4 . Electron microscopy studies elucidated that microstructural features depend critically on the heat treatment conditions as well as La content. La addition up to 1.0 mole found to be beneficial to refine particle size close to single domain wall size, which, in turn, led to enhance magnetic properties of the ferrite. Optimum magnetic properties for the La free BaFe 11 O 17.5 are H c =4.4kOe, B r =1.9kG, and (BH) max =0.85MGOe which were improved to H c =4.9kOe, B r =2.4kG and (BH) max =1.2MGOe with La 2 O 3 additive. The La 2 O 3 acts as a grain growth inhibitor and led to enhance high coercivity of 4.9kOe in the ferrite. The dielectric constant and dielectric loss factor decrease monotonically with increasing applied frequency at the constant temperature. Permeability is found to be sensitive to density and microstructural components like grain size and porosity of the sintered ferrites.