全自旋深脉冲神经网络STT-MRAM中基于回跳振荡的紧致概率泊松神经元

Ming-Hung Wu, Ming-Shun Huang, Zhifeng Zhu, Fu-Xiang Liang, Ming-Chun Hong, Jiefang Deng, Jeng-Hua Wei, S. Sheu, Chih-I Wu, G. Liang, T. Hou
{"title":"全自旋深脉冲神经网络STT-MRAM中基于回跳振荡的紧致概率泊松神经元","authors":"Ming-Hung Wu, Ming-Shun Huang, Zhifeng Zhu, Fu-Xiang Liang, Ming-Chun Hong, Jiefang Deng, Jeng-Hua Wei, S. Sheu, Chih-I Wu, G. Liang, T. Hou","doi":"10.1109/VLSITechnology18217.2020.9265033","DOIUrl":null,"url":null,"abstract":"A unique compact Poisson neuron that encodes information in the tunable duty cycle of probabilistic spike trains is presented as an enabling technology for cost-effective spiking neural network (SNN) hardware. The Poisson neuron exploits the back-hopping oscillation (BHO) in scalable spin-transfer torque (STT)-MRAM. The macrospin LLGS simulation confirms that the coupled local Joule heating and STT effects are responsible for the bias-dependent BHO. The complete neuron circuit design is at least $6\\times$ smaller than the state-of-the-art integrate-and- fire (IF) CMOS neuron. Hardware-friendly all-spin deep SNNs achieve equivalent accuracy to deep neural networks (DNN), 98.4 % for MNIST, even when considering the probabilistic nature of neurons.","PeriodicalId":6850,"journal":{"name":"2020 IEEE Symposium on VLSI Technology","volume":"32 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Compact Probabilistic Poisson Neuron based on Back-Hopping Oscillation in STT-MRAM for All-Spin Deep Spiking Neural Network\",\"authors\":\"Ming-Hung Wu, Ming-Shun Huang, Zhifeng Zhu, Fu-Xiang Liang, Ming-Chun Hong, Jiefang Deng, Jeng-Hua Wei, S. Sheu, Chih-I Wu, G. Liang, T. Hou\",\"doi\":\"10.1109/VLSITechnology18217.2020.9265033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A unique compact Poisson neuron that encodes information in the tunable duty cycle of probabilistic spike trains is presented as an enabling technology for cost-effective spiking neural network (SNN) hardware. The Poisson neuron exploits the back-hopping oscillation (BHO) in scalable spin-transfer torque (STT)-MRAM. The macrospin LLGS simulation confirms that the coupled local Joule heating and STT effects are responsible for the bias-dependent BHO. The complete neuron circuit design is at least $6\\\\times$ smaller than the state-of-the-art integrate-and- fire (IF) CMOS neuron. Hardware-friendly all-spin deep SNNs achieve equivalent accuracy to deep neural networks (DNN), 98.4 % for MNIST, even when considering the probabilistic nature of neurons.\",\"PeriodicalId\":6850,\"journal\":{\"name\":\"2020 IEEE Symposium on VLSI Technology\",\"volume\":\"32 1\",\"pages\":\"1-2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Symposium on VLSI Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSITechnology18217.2020.9265033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Symposium on VLSI Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSITechnology18217.2020.9265033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

提出了一种独特的紧凑泊松神经元,它在概率尖峰序列的可调占空比中编码信息,作为一种具有成本效益的尖峰神经网络(SNN)硬件实现技术。泊松神经元利用可伸缩自旋传递扭矩(STT)-MRAM中的回跳振荡(BHO)。宏观自旋LLGS模拟证实了局部焦耳加热和STT效应的耦合是偏置相关BHO的原因。完整的神经元电路设计比最先进的集成与点火(IF) CMOS神经元至少小6美元。即使考虑到神经元的概率性质,硬件友好的全自旋深度snn也能达到与深度神经网络(DNN)相当的精度,在MNIST中达到98.4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Compact Probabilistic Poisson Neuron based on Back-Hopping Oscillation in STT-MRAM for All-Spin Deep Spiking Neural Network
A unique compact Poisson neuron that encodes information in the tunable duty cycle of probabilistic spike trains is presented as an enabling technology for cost-effective spiking neural network (SNN) hardware. The Poisson neuron exploits the back-hopping oscillation (BHO) in scalable spin-transfer torque (STT)-MRAM. The macrospin LLGS simulation confirms that the coupled local Joule heating and STT effects are responsible for the bias-dependent BHO. The complete neuron circuit design is at least $6\times$ smaller than the state-of-the-art integrate-and- fire (IF) CMOS neuron. Hardware-friendly all-spin deep SNNs achieve equivalent accuracy to deep neural networks (DNN), 98.4 % for MNIST, even when considering the probabilistic nature of neurons.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信