{"title":"纳米振荡器的原子力显微镜动力学表征","authors":"B. Ilic, S. Krylov, L. Bellan, H. Craighead","doi":"10.1109/MEMSYS.2007.4433023","DOIUrl":null,"url":null,"abstract":"We report on the dynamic quantitative characterization of nanoelectromechanical systems (NEMS) through direct coupling with a micromechanical (MEMS) probe. The nanomechanical structures were driven using piezoelectric transducers and the resulting out-of-plane vibrations were monitored with a conventional commercially available atomic force microscope (AFM) probe. Intermittent contact imaging data and non-contact AFM interrogation revealed the initiation of interaction between the two oscillators, providing a description of the resonant response. The vibrational spectra measured through optical detection was in good agreement with the coupled NEMS-AFM system measurement results. The dynamic response of the coupled system was modelled through a combination of long range van der Waals and contact forces using the Derjaguin-Muller-Toporov model.","PeriodicalId":6388,"journal":{"name":"2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"85 1","pages":"95-98"},"PeriodicalIF":0.0000,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Dynamic characterization of nano oscillators by atomic force microscopy\",\"authors\":\"B. Ilic, S. Krylov, L. Bellan, H. Craighead\",\"doi\":\"10.1109/MEMSYS.2007.4433023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report on the dynamic quantitative characterization of nanoelectromechanical systems (NEMS) through direct coupling with a micromechanical (MEMS) probe. The nanomechanical structures were driven using piezoelectric transducers and the resulting out-of-plane vibrations were monitored with a conventional commercially available atomic force microscope (AFM) probe. Intermittent contact imaging data and non-contact AFM interrogation revealed the initiation of interaction between the two oscillators, providing a description of the resonant response. The vibrational spectra measured through optical detection was in good agreement with the coupled NEMS-AFM system measurement results. The dynamic response of the coupled system was modelled through a combination of long range van der Waals and contact forces using the Derjaguin-Muller-Toporov model.\",\"PeriodicalId\":6388,\"journal\":{\"name\":\"2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS)\",\"volume\":\"85 1\",\"pages\":\"95-98\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MEMSYS.2007.4433023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2007.4433023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dynamic characterization of nano oscillators by atomic force microscopy
We report on the dynamic quantitative characterization of nanoelectromechanical systems (NEMS) through direct coupling with a micromechanical (MEMS) probe. The nanomechanical structures were driven using piezoelectric transducers and the resulting out-of-plane vibrations were monitored with a conventional commercially available atomic force microscope (AFM) probe. Intermittent contact imaging data and non-contact AFM interrogation revealed the initiation of interaction between the two oscillators, providing a description of the resonant response. The vibrational spectra measured through optical detection was in good agreement with the coupled NEMS-AFM system measurement results. The dynamic response of the coupled system was modelled through a combination of long range van der Waals and contact forces using the Derjaguin-Muller-Toporov model.