{"title":"通过辅助工具筛选和诊断自闭症谱系障碍","authors":"Gürkan Tuna, Ayse Tuna","doi":"10.4018/978-1-7998-7732-5.ch001","DOIUrl":null,"url":null,"abstract":"Autism spectrum disorder (ASD) is a challenging developmental condition that involves restricted and/or repetitive behaviors and persistent challenges in social interaction and speech and nonverbal communication. There is not a standard medical test used to diagnose ASD; therefore, diagnosis is made by looking at the child's developmental history and behavior. In recent years, due to the increase in diagnosed cases of ASD, researchers proposed software-based tools to aid in and expedite the diagnosis. Considering the fact that most of these tools rely on the use of classifiers, in study, random forest, decision tree, k-nearest neighbors, and zero rule algorithms are used as classifiers, and their performances are compared using well-known performance metrics. As proven in the study, random forest algorithm can provide higher accuracy than the others in the classification of ASD and can be integrated into a computer- or humanoid-robot-based system for automated prescreening and diagnosis of ASD in preschool children groups.","PeriodicalId":7293,"journal":{"name":"Advances in Early Childhood and K-12 Education","volume":"146 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Screening and Diagnosis of Autism Spectrum Disorder via Assistive Tools\",\"authors\":\"Gürkan Tuna, Ayse Tuna\",\"doi\":\"10.4018/978-1-7998-7732-5.ch001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Autism spectrum disorder (ASD) is a challenging developmental condition that involves restricted and/or repetitive behaviors and persistent challenges in social interaction and speech and nonverbal communication. There is not a standard medical test used to diagnose ASD; therefore, diagnosis is made by looking at the child's developmental history and behavior. In recent years, due to the increase in diagnosed cases of ASD, researchers proposed software-based tools to aid in and expedite the diagnosis. Considering the fact that most of these tools rely on the use of classifiers, in study, random forest, decision tree, k-nearest neighbors, and zero rule algorithms are used as classifiers, and their performances are compared using well-known performance metrics. As proven in the study, random forest algorithm can provide higher accuracy than the others in the classification of ASD and can be integrated into a computer- or humanoid-robot-based system for automated prescreening and diagnosis of ASD in preschool children groups.\",\"PeriodicalId\":7293,\"journal\":{\"name\":\"Advances in Early Childhood and K-12 Education\",\"volume\":\"146 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Early Childhood and K-12 Education\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/978-1-7998-7732-5.ch001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Early Childhood and K-12 Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-7998-7732-5.ch001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Screening and Diagnosis of Autism Spectrum Disorder via Assistive Tools
Autism spectrum disorder (ASD) is a challenging developmental condition that involves restricted and/or repetitive behaviors and persistent challenges in social interaction and speech and nonverbal communication. There is not a standard medical test used to diagnose ASD; therefore, diagnosis is made by looking at the child's developmental history and behavior. In recent years, due to the increase in diagnosed cases of ASD, researchers proposed software-based tools to aid in and expedite the diagnosis. Considering the fact that most of these tools rely on the use of classifiers, in study, random forest, decision tree, k-nearest neighbors, and zero rule algorithms are used as classifiers, and their performances are compared using well-known performance metrics. As proven in the study, random forest algorithm can provide higher accuracy than the others in the classification of ASD and can be integrated into a computer- or humanoid-robot-based system for automated prescreening and diagnosis of ASD in preschool children groups.