f -膨胀变换群

H.B. Keynes , M. Sears
{"title":"f -膨胀变换群","authors":"H.B. Keynes ,&nbsp;M. Sears","doi":"10.1016/0016-660X(79)90029-1","DOIUrl":null,"url":null,"abstract":"<div><p>An initial investigation in <span><math><mtext>F</mtext></math></span>-expansion relative to families of continuous functions on the acting group is presented, modelled after previous work of Bowen and Walters on real flows. Basic properties are established, and expansion in the natural class of non-trivial homomorphisms is extensively studied. Finally, modelling discrete flows with such expansion in symbolic subshifts is investigated. Generalizations to <strong>R</strong><sup>n</sup> and <strong>Z</strong><sup>n</sup> are indicated.</p></div>","PeriodicalId":100574,"journal":{"name":"General Topology and its Applications","volume":"10 1","pages":"Pages 67-85"},"PeriodicalIF":0.0000,"publicationDate":"1979-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0016-660X(79)90029-1","citationCount":"15","resultStr":"{\"title\":\"F-Expansive transformation groups\",\"authors\":\"H.B. Keynes ,&nbsp;M. Sears\",\"doi\":\"10.1016/0016-660X(79)90029-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>An initial investigation in <span><math><mtext>F</mtext></math></span>-expansion relative to families of continuous functions on the acting group is presented, modelled after previous work of Bowen and Walters on real flows. Basic properties are established, and expansion in the natural class of non-trivial homomorphisms is extensively studied. Finally, modelling discrete flows with such expansion in symbolic subshifts is investigated. Generalizations to <strong>R</strong><sup>n</sup> and <strong>Z</strong><sup>n</sup> are indicated.</p></div>\",\"PeriodicalId\":100574,\"journal\":{\"name\":\"General Topology and its Applications\",\"volume\":\"10 1\",\"pages\":\"Pages 67-85\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1979-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0016-660X(79)90029-1\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"General Topology and its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/0016660X79900291\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"General Topology and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0016660X79900291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

本文在Bowen和Walters先前对实际流的研究基础上,对作用群上连续函数族的f展开进行了初步研究。建立了非平凡同态的基本性质,并对非平凡同态在自然类中的展开进行了广泛的研究。最后,研究了离散流在符号子移中的展开式建模。指出了对Rn和Zn的推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
F-Expansive transformation groups

An initial investigation in F-expansion relative to families of continuous functions on the acting group is presented, modelled after previous work of Bowen and Walters on real flows. Basic properties are established, and expansion in the natural class of non-trivial homomorphisms is extensively studied. Finally, modelling discrete flows with such expansion in symbolic subshifts is investigated. Generalizations to Rn and Zn are indicated.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信