Mostofa Sadat, Nayef Albab, Faria Chowdhury, Mohammad Muhshin Aziz Khan
{"title":"外部改型对乘用车减阻效果的数值模拟研究","authors":"Mostofa Sadat, Nayef Albab, Faria Chowdhury, Mohammad Muhshin Aziz Khan","doi":"10.15282/ijame.19.1.2022.19.0738","DOIUrl":null,"url":null,"abstract":"This study used a numerical simulation approach to examine the effects of external modifications in reducing aerodynamic drag on passenger vehicles. During the simulation, modifications included reducing mirror size by replacing the side mirrors with cameras and covering the wheel area. The resulting changes in drag force for different combinations of modifications were compared with a conventional baseline model to determine the most aerodynamic configuration. The study found that side view cameras reduced drag forces by almost 2.6% due to their smaller frontal areas and improvement in the overall aerodynamics of the vehicle. Besides, an increase in wheel coverage decreased the drag causing up to 2.7% of drag force reduction for a wheel with an 87% coverage area. This is because of the reduction in wake formation caused by the wheel rims. Finally, using a combination of smaller cameras and wheels with larger coverage areas resulted in a maximum drag reduction of about 4.3%.","PeriodicalId":13935,"journal":{"name":"International Journal of Automotive and Mechanical Engineering","volume":"76 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Numerical Simulation Approach to Investigate the Effects of External Modifications in Reducing Aerodynamic Drag on Passenger Vehicles\",\"authors\":\"Mostofa Sadat, Nayef Albab, Faria Chowdhury, Mohammad Muhshin Aziz Khan\",\"doi\":\"10.15282/ijame.19.1.2022.19.0738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study used a numerical simulation approach to examine the effects of external modifications in reducing aerodynamic drag on passenger vehicles. During the simulation, modifications included reducing mirror size by replacing the side mirrors with cameras and covering the wheel area. The resulting changes in drag force for different combinations of modifications were compared with a conventional baseline model to determine the most aerodynamic configuration. The study found that side view cameras reduced drag forces by almost 2.6% due to their smaller frontal areas and improvement in the overall aerodynamics of the vehicle. Besides, an increase in wheel coverage decreased the drag causing up to 2.7% of drag force reduction for a wheel with an 87% coverage area. This is because of the reduction in wake formation caused by the wheel rims. Finally, using a combination of smaller cameras and wheels with larger coverage areas resulted in a maximum drag reduction of about 4.3%.\",\"PeriodicalId\":13935,\"journal\":{\"name\":\"International Journal of Automotive and Mechanical Engineering\",\"volume\":\"76 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Automotive and Mechanical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15282/ijame.19.1.2022.19.0738\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automotive and Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15282/ijame.19.1.2022.19.0738","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Numerical Simulation Approach to Investigate the Effects of External Modifications in Reducing Aerodynamic Drag on Passenger Vehicles
This study used a numerical simulation approach to examine the effects of external modifications in reducing aerodynamic drag on passenger vehicles. During the simulation, modifications included reducing mirror size by replacing the side mirrors with cameras and covering the wheel area. The resulting changes in drag force for different combinations of modifications were compared with a conventional baseline model to determine the most aerodynamic configuration. The study found that side view cameras reduced drag forces by almost 2.6% due to their smaller frontal areas and improvement in the overall aerodynamics of the vehicle. Besides, an increase in wheel coverage decreased the drag causing up to 2.7% of drag force reduction for a wheel with an 87% coverage area. This is because of the reduction in wake formation caused by the wheel rims. Finally, using a combination of smaller cameras and wheels with larger coverage areas resulted in a maximum drag reduction of about 4.3%.
期刊介绍:
The IJAME provides the forum for high-quality research communications and addresses all aspects of original experimental information based on theory and their applications. This journal welcomes all contributions from those who wish to report on new developments in automotive and mechanical engineering fields within the following scopes. -Engine/Emission Technology Automobile Body and Safety- Vehicle Dynamics- Automotive Electronics- Alternative Energy- Energy Conversion- Fuels and Lubricants - Combustion and Reacting Flows- New and Renewable Energy Technologies- Automotive Electrical Systems- Automotive Materials- Automotive Transmission- Automotive Pollution and Control- Vehicle Maintenance- Intelligent Vehicle/Transportation Systems- Fuel Cell, Hybrid, Electrical Vehicle and Other Fields of Automotive Engineering- Engineering Management /TQM- Heat and Mass Transfer- Fluid and Thermal Engineering- CAE/FEA/CAD/CFD- Engineering Mechanics- Modeling and Simulation- Metallurgy/ Materials Engineering- Applied Mechanics- Thermodynamics- Agricultural Machinery and Equipment- Mechatronics- Automatic Control- Multidisciplinary design and optimization - Fluid Mechanics and Dynamics- Thermal-Fluids Machinery- Experimental and Computational Mechanics - Measurement and Instrumentation- HVAC- Manufacturing Systems- Materials Processing- Noise and Vibration- Composite and Polymer Materials- Biomechanical Engineering- Fatigue and Fracture Mechanics- Machine Components design- Gas Turbine- Power Plant Engineering- Artificial Intelligent/Neural Network- Robotic Systems- Solar Energy- Powder Metallurgy and Metal Ceramics- Discrete Systems- Non-linear Analysis- Structural Analysis- Tribology- Engineering Materials- Mechanical Systems and Technology- Pneumatic and Hydraulic Systems - Failure Analysis- Any other related topics.