{"title":"用于 LPD 校准的可变偏振 X 射线源","authors":"Yanjun Xie, Hongbang Liu, Huanbo Feng, Fei Xie, Zongwang Fan, Hui Wang, Ran Chen, Qian Liu, Difan Yi, Enwei Liang","doi":"10.1007/s10686-023-09905-9","DOIUrl":null,"url":null,"abstract":"<div><p>This article presents the design and implementation of a soft X-ray polarized calibration platform based on Bragg’s Law and Fresnel’s Law, which is used to calibrate low-energy polarization detector(LPD/POLAR-2) that has potential deployment onboard the China Space Station. The platform is equipped with versatile equipment that can generate both completely and partially polarized X-ray beams, and provides precise control over the diffraction angle, achieving the desired polarization degree. It covers the 3–8 keV energy band, with a high fraction of monochromatic light (>93%)(The proportion of monochromatic light is defined as the ratio of the number of photons falling within three times the sigma of the target peak centre value to the total photons.) and good monochromaticity(In this article, we evaluate the monochromaticity of the polarized source using the Full Width at Half Maximum (FWHM) of its all-in-one peak.), and is suitable for calibrating LPD’s large-field-of-view soft X-ray polarization detector using its vertically incident and obliquely incident polarized X-rays. The completely and partially polarized X-ray beams generated at 8.0 keV by the calibration platform are used to test the polarization measurement capabilities of the soft X-ray polarized detector and verify the linearity between the calibration source’s polarization and the measurable modulation of the polarimeter.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"56 2-3","pages":"499 - 515"},"PeriodicalIF":2.7000,"publicationDate":"2023-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variably polarized X-ray sources for LPD calibration\",\"authors\":\"Yanjun Xie, Hongbang Liu, Huanbo Feng, Fei Xie, Zongwang Fan, Hui Wang, Ran Chen, Qian Liu, Difan Yi, Enwei Liang\",\"doi\":\"10.1007/s10686-023-09905-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This article presents the design and implementation of a soft X-ray polarized calibration platform based on Bragg’s Law and Fresnel’s Law, which is used to calibrate low-energy polarization detector(LPD/POLAR-2) that has potential deployment onboard the China Space Station. The platform is equipped with versatile equipment that can generate both completely and partially polarized X-ray beams, and provides precise control over the diffraction angle, achieving the desired polarization degree. It covers the 3–8 keV energy band, with a high fraction of monochromatic light (>93%)(The proportion of monochromatic light is defined as the ratio of the number of photons falling within three times the sigma of the target peak centre value to the total photons.) and good monochromaticity(In this article, we evaluate the monochromaticity of the polarized source using the Full Width at Half Maximum (FWHM) of its all-in-one peak.), and is suitable for calibrating LPD’s large-field-of-view soft X-ray polarization detector using its vertically incident and obliquely incident polarized X-rays. The completely and partially polarized X-ray beams generated at 8.0 keV by the calibration platform are used to test the polarization measurement capabilities of the soft X-ray polarized detector and verify the linearity between the calibration source’s polarization and the measurable modulation of the polarimeter.</p></div>\",\"PeriodicalId\":551,\"journal\":{\"name\":\"Experimental Astronomy\",\"volume\":\"56 2-3\",\"pages\":\"499 - 515\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Astronomy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10686-023-09905-9\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Astronomy","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10686-023-09905-9","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
摘要
本文介绍了基于布拉格定律和菲涅尔定律的软X射线偏振校准平台的设计与实现,该平台用于校准有可能部署在中国空间站上的低能偏振探测器(LPD/POLAR-2)。该平台配备了多功能设备,可以产生完全偏振和部分偏振的 X 射线束,并对衍射角进行精确控制,达到所需的偏振程度。该平台覆盖 3-8 keV 能段,单色光比例高(93%)(单色光比例定义为目标峰中心值三倍σ以内的光子数与总光子数之比),单色性好。在本文中,我们使用偏振光源全峰值的半最大值全宽(FWHM)来评估其单色性),并适合使用其垂直入射和斜向入射的偏振 X 射线来校准 LPD 的大视场软 X 射线偏振探测器。校准平台在 8.0 keV 产生的完全和部分偏振 X 射线束用于测试软 X 射线偏振探测器的偏振测量能力,并验证校准源的偏振与偏振计可测量调制之间的线性关系。
Variably polarized X-ray sources for LPD calibration
This article presents the design and implementation of a soft X-ray polarized calibration platform based on Bragg’s Law and Fresnel’s Law, which is used to calibrate low-energy polarization detector(LPD/POLAR-2) that has potential deployment onboard the China Space Station. The platform is equipped with versatile equipment that can generate both completely and partially polarized X-ray beams, and provides precise control over the diffraction angle, achieving the desired polarization degree. It covers the 3–8 keV energy band, with a high fraction of monochromatic light (>93%)(The proportion of monochromatic light is defined as the ratio of the number of photons falling within three times the sigma of the target peak centre value to the total photons.) and good monochromaticity(In this article, we evaluate the monochromaticity of the polarized source using the Full Width at Half Maximum (FWHM) of its all-in-one peak.), and is suitable for calibrating LPD’s large-field-of-view soft X-ray polarization detector using its vertically incident and obliquely incident polarized X-rays. The completely and partially polarized X-ray beams generated at 8.0 keV by the calibration platform are used to test the polarization measurement capabilities of the soft X-ray polarized detector and verify the linearity between the calibration source’s polarization and the measurable modulation of the polarimeter.
期刊介绍:
Many new instruments for observing astronomical objects at a variety of wavelengths have been and are continually being developed. Furthermore, a vast amount of effort is being put into the development of new techniques for data analysis in order to cope with great streams of data collected by these instruments.
Experimental Astronomy acts as a medium for the publication of papers of contemporary scientific interest on astrophysical instrumentation and methods necessary for the conduct of astronomy at all wavelength fields.
Experimental Astronomy publishes full-length articles, research letters and reviews on developments in detection techniques, instruments, and data analysis and image processing techniques. Occasional special issues are published, giving an in-depth presentation of the instrumentation and/or analysis connected with specific projects, such as satellite experiments or ground-based telescopes, or of specialized techniques.