Y. dong, Yunxia Jin, Fanyu Kong, Jingyin Zhao, J. Mo, Dongbing He, Jing Sun, J. Shao
{"title":"二维波束扫描系统中的角放大器","authors":"Y. dong, Yunxia Jin, Fanyu Kong, Jingyin Zhao, J. Mo, Dongbing He, Jing Sun, J. Shao","doi":"10.1017/hpl.2022.42","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, a 2D angle amplifier based on peristrophic multiplexed volume Bragg gratings is designed and prepared, in which a calculation method is firstly proposed to optimize the number of channels to a minimum. The induction of peristrophic multiplexing reduces the performance difference in one bulk of the grating, whereas there is no need to deliberately optimize the fabrication process. It is revealed that a discrete 2D angle deflection range of ±30° is obtained and the relative diffraction efficiency of all the grating channels reaches more than 55% with a root-mean-square deviation of less than 3.4% in the same grating. The deviation of the Bragg incidence and exit angles from the expected values is less than 0.07°. It is believed that the proposed 2D angle amplifier has the potential to realize high-performance and large-angle beam steering in high-power laser beam scanning systems.","PeriodicalId":54285,"journal":{"name":"High Power Laser Science and Engineering","volume":"05 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2023-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Angle amplifier in a 2D beam scanning system based on peristrophic multiplexed volume Bragg gratings\",\"authors\":\"Y. dong, Yunxia Jin, Fanyu Kong, Jingyin Zhao, J. Mo, Dongbing He, Jing Sun, J. Shao\",\"doi\":\"10.1017/hpl.2022.42\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, a 2D angle amplifier based on peristrophic multiplexed volume Bragg gratings is designed and prepared, in which a calculation method is firstly proposed to optimize the number of channels to a minimum. The induction of peristrophic multiplexing reduces the performance difference in one bulk of the grating, whereas there is no need to deliberately optimize the fabrication process. It is revealed that a discrete 2D angle deflection range of ±30° is obtained and the relative diffraction efficiency of all the grating channels reaches more than 55% with a root-mean-square deviation of less than 3.4% in the same grating. The deviation of the Bragg incidence and exit angles from the expected values is less than 0.07°. It is believed that the proposed 2D angle amplifier has the potential to realize high-performance and large-angle beam steering in high-power laser beam scanning systems.\",\"PeriodicalId\":54285,\"journal\":{\"name\":\"High Power Laser Science and Engineering\",\"volume\":\"05 1\",\"pages\":\"\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2023-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Power Laser Science and Engineering\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1017/hpl.2022.42\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Power Laser Science and Engineering","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1017/hpl.2022.42","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Angle amplifier in a 2D beam scanning system based on peristrophic multiplexed volume Bragg gratings
Abstract In this paper, a 2D angle amplifier based on peristrophic multiplexed volume Bragg gratings is designed and prepared, in which a calculation method is firstly proposed to optimize the number of channels to a minimum. The induction of peristrophic multiplexing reduces the performance difference in one bulk of the grating, whereas there is no need to deliberately optimize the fabrication process. It is revealed that a discrete 2D angle deflection range of ±30° is obtained and the relative diffraction efficiency of all the grating channels reaches more than 55% with a root-mean-square deviation of less than 3.4% in the same grating. The deviation of the Bragg incidence and exit angles from the expected values is less than 0.07°. It is believed that the proposed 2D angle amplifier has the potential to realize high-performance and large-angle beam steering in high-power laser beam scanning systems.
期刊介绍:
High Power Laser Science and Engineering (HPLaser) is an international, peer-reviewed open access journal which focuses on all aspects of high power laser science and engineering.
HPLaser publishes research that seeks to uncover the underlying science and engineering in the fields of high energy density physics, high power lasers, advanced laser technology and applications and laser components. Topics covered include laser-plasma interaction, ultra-intense ultra-short pulse laser interaction with matter, attosecond physics, laser design, modelling and optimization, laser amplifiers, nonlinear optics, laser engineering, optical materials, optical devices, fiber lasers, diode-pumped solid state lasers and excimer lasers.