二维波束扫描系统中的角放大器

IF 5.2 1区 物理与天体物理 Q1 OPTICS
Y. dong, Yunxia Jin, Fanyu Kong, Jingyin Zhao, J. Mo, Dongbing He, Jing Sun, J. Shao
{"title":"二维波束扫描系统中的角放大器","authors":"Y. dong, Yunxia Jin, Fanyu Kong, Jingyin Zhao, J. Mo, Dongbing He, Jing Sun, J. Shao","doi":"10.1017/hpl.2022.42","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, a 2D angle amplifier based on peristrophic multiplexed volume Bragg gratings is designed and prepared, in which a calculation method is firstly proposed to optimize the number of channels to a minimum. The induction of peristrophic multiplexing reduces the performance difference in one bulk of the grating, whereas there is no need to deliberately optimize the fabrication process. It is revealed that a discrete 2D angle deflection range of ±30° is obtained and the relative diffraction efficiency of all the grating channels reaches more than 55% with a root-mean-square deviation of less than 3.4% in the same grating. The deviation of the Bragg incidence and exit angles from the expected values is less than 0.07°. It is believed that the proposed 2D angle amplifier has the potential to realize high-performance and large-angle beam steering in high-power laser beam scanning systems.","PeriodicalId":54285,"journal":{"name":"High Power Laser Science and Engineering","volume":"05 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2023-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Angle amplifier in a 2D beam scanning system based on peristrophic multiplexed volume Bragg gratings\",\"authors\":\"Y. dong, Yunxia Jin, Fanyu Kong, Jingyin Zhao, J. Mo, Dongbing He, Jing Sun, J. Shao\",\"doi\":\"10.1017/hpl.2022.42\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, a 2D angle amplifier based on peristrophic multiplexed volume Bragg gratings is designed and prepared, in which a calculation method is firstly proposed to optimize the number of channels to a minimum. The induction of peristrophic multiplexing reduces the performance difference in one bulk of the grating, whereas there is no need to deliberately optimize the fabrication process. It is revealed that a discrete 2D angle deflection range of ±30° is obtained and the relative diffraction efficiency of all the grating channels reaches more than 55% with a root-mean-square deviation of less than 3.4% in the same grating. The deviation of the Bragg incidence and exit angles from the expected values is less than 0.07°. It is believed that the proposed 2D angle amplifier has the potential to realize high-performance and large-angle beam steering in high-power laser beam scanning systems.\",\"PeriodicalId\":54285,\"journal\":{\"name\":\"High Power Laser Science and Engineering\",\"volume\":\"05 1\",\"pages\":\"\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2023-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Power Laser Science and Engineering\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1017/hpl.2022.42\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Power Laser Science and Engineering","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1017/hpl.2022.42","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

设计并制备了一种基于自转多路体布拉格光栅的二维角度放大器,并提出了一种优化通道数的计算方法。微差复用的诱导减小了同一块光栅的性能差异,而无需刻意优化制造工艺。结果表明,在±30°的离散二维角偏转范围内,同一光栅各通道的相对衍射效率均达到55%以上,均方根偏差小于3.4%。Bragg入射角和出口角与期望值的偏差小于0.07°。认为所设计的二维角度放大器具有实现高功率激光束扫描系统中高性能、大角度光束转向的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Angle amplifier in a 2D beam scanning system based on peristrophic multiplexed volume Bragg gratings
Abstract In this paper, a 2D angle amplifier based on peristrophic multiplexed volume Bragg gratings is designed and prepared, in which a calculation method is firstly proposed to optimize the number of channels to a minimum. The induction of peristrophic multiplexing reduces the performance difference in one bulk of the grating, whereas there is no need to deliberately optimize the fabrication process. It is revealed that a discrete 2D angle deflection range of ±30° is obtained and the relative diffraction efficiency of all the grating channels reaches more than 55% with a root-mean-square deviation of less than 3.4% in the same grating. The deviation of the Bragg incidence and exit angles from the expected values is less than 0.07°. It is believed that the proposed 2D angle amplifier has the potential to realize high-performance and large-angle beam steering in high-power laser beam scanning systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
High Power Laser Science and Engineering
High Power Laser Science and Engineering Physics and Astronomy-Nuclear and High Energy Physics
CiteScore
7.10
自引率
4.20%
发文量
401
审稿时长
21 weeks
期刊介绍: High Power Laser Science and Engineering (HPLaser) is an international, peer-reviewed open access journal which focuses on all aspects of high power laser science and engineering. HPLaser publishes research that seeks to uncover the underlying science and engineering in the fields of high energy density physics, high power lasers, advanced laser technology and applications and laser components. Topics covered include laser-plasma interaction, ultra-intense ultra-short pulse laser interaction with matter, attosecond physics, laser design, modelling and optimization, laser amplifiers, nonlinear optics, laser engineering, optical materials, optical devices, fiber lasers, diode-pumped solid state lasers and excimer lasers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信