{"title":"高岭土和膨润土耐火砂浆的力学和热性能研究","authors":"F. Gata, Enas Mhui","doi":"10.53293/jasn.2021.3743.1039","DOIUrl":null,"url":null,"abstract":"*Corresponding Author: Enas Muhi Hadi enas.m.hadi@uotechnology.edu.iq Abstract In this paper, Mortar was prepared from medium alumina refractory grog, bricks crashed as a mean material to a particular size, and Iraqi raw (kaolin or bentonite) as binding materials. Refractory bricks were crushed, milled, then sieved to three particle sizes: fine as (1.18 >fine> 0) mm, medium as (2.36 > medium > 1.18) mm, crushed as (400 > coarse > 2.36) mm. Then these particle sizes were mixed with Iraqi raw kaolin or bentonite with selected ratios (10,15,20,30 and 40) %. Specimens were formed by the wetting method, then drying it at laboratory temperature for one day, followed by firing it at 1200 °C. Results showed that the porosity of specimens decreases when increasing the clay ratio from 3-4% (kaolin or bentonite), and the bond strength between grog and clay increases when increasing the clay ratio from 2-3% (kaolin or bentonite). Also, the diametrical strength increases when increasing the clay ratio from 4-7% (kaolin or bentonite). The thermal shock results showed that K-mortar is better than B-mortar, depending on the results we obtained through the effect of temperature and diametrical strength. The SEM results showed that mortar structure was produced by adding 40% bentonite with small irregularly shaped. The mortar was produced by adding 40% of kaolin which possesses regular mullite crystals. Finally, the results of the test EDS that K-mortar were revealed in showed that there is no adsorption of carbon while Bmortar showed that there is adsorption of carbon atoms.","PeriodicalId":15241,"journal":{"name":"Journal of Applied Sciences and Nanotechnology","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of the Mechanical and Thermal Properties of Refractory Mortars from Kaolin and Bentonite\",\"authors\":\"F. Gata, Enas Mhui\",\"doi\":\"10.53293/jasn.2021.3743.1039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"*Corresponding Author: Enas Muhi Hadi enas.m.hadi@uotechnology.edu.iq Abstract In this paper, Mortar was prepared from medium alumina refractory grog, bricks crashed as a mean material to a particular size, and Iraqi raw (kaolin or bentonite) as binding materials. Refractory bricks were crushed, milled, then sieved to three particle sizes: fine as (1.18 >fine> 0) mm, medium as (2.36 > medium > 1.18) mm, crushed as (400 > coarse > 2.36) mm. Then these particle sizes were mixed with Iraqi raw kaolin or bentonite with selected ratios (10,15,20,30 and 40) %. Specimens were formed by the wetting method, then drying it at laboratory temperature for one day, followed by firing it at 1200 °C. Results showed that the porosity of specimens decreases when increasing the clay ratio from 3-4% (kaolin or bentonite), and the bond strength between grog and clay increases when increasing the clay ratio from 2-3% (kaolin or bentonite). Also, the diametrical strength increases when increasing the clay ratio from 4-7% (kaolin or bentonite). The thermal shock results showed that K-mortar is better than B-mortar, depending on the results we obtained through the effect of temperature and diametrical strength. The SEM results showed that mortar structure was produced by adding 40% bentonite with small irregularly shaped. The mortar was produced by adding 40% of kaolin which possesses regular mullite crystals. Finally, the results of the test EDS that K-mortar were revealed in showed that there is no adsorption of carbon while Bmortar showed that there is adsorption of carbon atoms.\",\"PeriodicalId\":15241,\"journal\":{\"name\":\"Journal of Applied Sciences and Nanotechnology\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Sciences and Nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53293/jasn.2021.3743.1039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Sciences and Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53293/jasn.2021.3743.1039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Study of the Mechanical and Thermal Properties of Refractory Mortars from Kaolin and Bentonite
*Corresponding Author: Enas Muhi Hadi enas.m.hadi@uotechnology.edu.iq Abstract In this paper, Mortar was prepared from medium alumina refractory grog, bricks crashed as a mean material to a particular size, and Iraqi raw (kaolin or bentonite) as binding materials. Refractory bricks were crushed, milled, then sieved to three particle sizes: fine as (1.18 >fine> 0) mm, medium as (2.36 > medium > 1.18) mm, crushed as (400 > coarse > 2.36) mm. Then these particle sizes were mixed with Iraqi raw kaolin or bentonite with selected ratios (10,15,20,30 and 40) %. Specimens were formed by the wetting method, then drying it at laboratory temperature for one day, followed by firing it at 1200 °C. Results showed that the porosity of specimens decreases when increasing the clay ratio from 3-4% (kaolin or bentonite), and the bond strength between grog and clay increases when increasing the clay ratio from 2-3% (kaolin or bentonite). Also, the diametrical strength increases when increasing the clay ratio from 4-7% (kaolin or bentonite). The thermal shock results showed that K-mortar is better than B-mortar, depending on the results we obtained through the effect of temperature and diametrical strength. The SEM results showed that mortar structure was produced by adding 40% bentonite with small irregularly shaped. The mortar was produced by adding 40% of kaolin which possesses regular mullite crystals. Finally, the results of the test EDS that K-mortar were revealed in showed that there is no adsorption of carbon while Bmortar showed that there is adsorption of carbon atoms.