{"title":"关于保持对称的局部运算和保持地图的多面体","authors":"G. Brinkmann, Heidi Van den Camp","doi":"10.26493/1855-3974.2749.b64","DOIUrl":null,"url":null,"abstract":"We prove that local operations that preserve all symmetries, as e.g. dual, truncation, medial, or join, as well as local operations that are only guaranteed to preserve all orientation-preserving symmetries, as e.g. gyro or snub, preserve the polyhedrality of simple maps. This generalizes a result by Mohar proving this for the operation dual. We give the proof based on an abstract characterization of these operations, prove that the operations are well defined, and also demonstrate the close connection between these operations and Delaney-Dress symbols.","PeriodicalId":49239,"journal":{"name":"Ars Mathematica Contemporanea","volume":"20 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On local operations that preserve symmetries and on preserving polyhedrality of maps\",\"authors\":\"G. Brinkmann, Heidi Van den Camp\",\"doi\":\"10.26493/1855-3974.2749.b64\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that local operations that preserve all symmetries, as e.g. dual, truncation, medial, or join, as well as local operations that are only guaranteed to preserve all orientation-preserving symmetries, as e.g. gyro or snub, preserve the polyhedrality of simple maps. This generalizes a result by Mohar proving this for the operation dual. We give the proof based on an abstract characterization of these operations, prove that the operations are well defined, and also demonstrate the close connection between these operations and Delaney-Dress symbols.\",\"PeriodicalId\":49239,\"journal\":{\"name\":\"Ars Mathematica Contemporanea\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ars Mathematica Contemporanea\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.26493/1855-3974.2749.b64\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ars Mathematica Contemporanea","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.26493/1855-3974.2749.b64","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
On local operations that preserve symmetries and on preserving polyhedrality of maps
We prove that local operations that preserve all symmetries, as e.g. dual, truncation, medial, or join, as well as local operations that are only guaranteed to preserve all orientation-preserving symmetries, as e.g. gyro or snub, preserve the polyhedrality of simple maps. This generalizes a result by Mohar proving this for the operation dual. We give the proof based on an abstract characterization of these operations, prove that the operations are well defined, and also demonstrate the close connection between these operations and Delaney-Dress symbols.
期刊介绍:
Ars mathematica contemporanea will publish high-quality articles in contemporary mathematics that arise from the discrete and concrete mathematics paradigm. It will favor themes that combine at least two different fields of mathematics. In particular, we welcome papers intersecting discrete mathematics with other branches of mathematics, such as algebra, geometry, topology, theoretical computer science, and combinatorics. The name of the journal was chosen carefully. Symmetry is certainly a theme that is quite welcome to the journal, as it is through symmetry that mathematics comes closest to art.