{"title":"聚甲基丙烯酸-共甲基丙烯酸甲酯接枝聚乙二醇单甲醚的直接缩合反应及其在生物医学工程中的应用","authors":"A. Shirazi, M. Imani, Shahriar Sharifi","doi":"10.5923/J.AJBE.20110101.03","DOIUrl":null,"url":null,"abstract":"Synthesis, characterization and cytotoxicity evaluation of copolymers based on polyethylene glycol monmethyl ether-g-poly(methacrylic acid-co-methyl methacrylate) are reported via a polymeric precursor method. Grafting was ac- complished based on direct condensation reaction in the presence of dicyclohexylcarbodiimide as an esterifica- tion-promoting agent catalyzed by dimethylamino pyridine. Polyethylene glycol grafted copolymers were characterized using various spectroscopic techniques; in addition, their biocompatibility was studied. Manifestation of bands assigned to the ester functional groups in Fourier transform infrared spectra and nuclear magnetic resonance was employed for structural characterization of the grafted copolymers. Performance of grafting reaction was guaranteed by determination of grafting efficacy. Cytotoxicity evaluations of the grafted copolymer using L929 fibroblast cell line elucidated acceptable biocom- patibility profile; consequently, the applicability of the copolymers is confirmed for biomedical applications.","PeriodicalId":7620,"journal":{"name":"American Journal of Biomedical Engineering","volume":"15 1","pages":"13-19"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Direct Condensation Reaction for Grafting of Polyethylene Glycol Monomethyl Ether on Poly(Methacrylic Acid-co-Methyl Methacrylate) for Application in Biomedical Engineering\",\"authors\":\"A. Shirazi, M. Imani, Shahriar Sharifi\",\"doi\":\"10.5923/J.AJBE.20110101.03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Synthesis, characterization and cytotoxicity evaluation of copolymers based on polyethylene glycol monmethyl ether-g-poly(methacrylic acid-co-methyl methacrylate) are reported via a polymeric precursor method. Grafting was ac- complished based on direct condensation reaction in the presence of dicyclohexylcarbodiimide as an esterifica- tion-promoting agent catalyzed by dimethylamino pyridine. Polyethylene glycol grafted copolymers were characterized using various spectroscopic techniques; in addition, their biocompatibility was studied. Manifestation of bands assigned to the ester functional groups in Fourier transform infrared spectra and nuclear magnetic resonance was employed for structural characterization of the grafted copolymers. Performance of grafting reaction was guaranteed by determination of grafting efficacy. Cytotoxicity evaluations of the grafted copolymer using L929 fibroblast cell line elucidated acceptable biocom- patibility profile; consequently, the applicability of the copolymers is confirmed for biomedical applications.\",\"PeriodicalId\":7620,\"journal\":{\"name\":\"American Journal of Biomedical Engineering\",\"volume\":\"15 1\",\"pages\":\"13-19\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Biomedical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5923/J.AJBE.20110101.03\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5923/J.AJBE.20110101.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Direct Condensation Reaction for Grafting of Polyethylene Glycol Monomethyl Ether on Poly(Methacrylic Acid-co-Methyl Methacrylate) for Application in Biomedical Engineering
Synthesis, characterization and cytotoxicity evaluation of copolymers based on polyethylene glycol monmethyl ether-g-poly(methacrylic acid-co-methyl methacrylate) are reported via a polymeric precursor method. Grafting was ac- complished based on direct condensation reaction in the presence of dicyclohexylcarbodiimide as an esterifica- tion-promoting agent catalyzed by dimethylamino pyridine. Polyethylene glycol grafted copolymers were characterized using various spectroscopic techniques; in addition, their biocompatibility was studied. Manifestation of bands assigned to the ester functional groups in Fourier transform infrared spectra and nuclear magnetic resonance was employed for structural characterization of the grafted copolymers. Performance of grafting reaction was guaranteed by determination of grafting efficacy. Cytotoxicity evaluations of the grafted copolymer using L929 fibroblast cell line elucidated acceptable biocom- patibility profile; consequently, the applicability of the copolymers is confirmed for biomedical applications.