正则图中的匹配:最小化配分函数

M'arton Borb'enyi, P'eter Csikv'ari
{"title":"正则图中的匹配:最小化配分函数","authors":"M'arton Borb'enyi, P'eter Csikv'ari","doi":"10.22108/TOC.2020.123763.1742","DOIUrl":null,"url":null,"abstract":"For a graph $G$ on $v(G)$ vertices let $m_k(G)$ denote the number of matchings of size $k$, and consider the partition function $M_{G}(\\lambda)=\\sum_{k=0}^nm_k(G)\\lambda^k$. In this paper we show that if $G$ is a $d$--regular graph and $0 \\frac{1}{v(K_{d+1})}\\ln M_{K_{d+1}}(\\lambda).$$ The same inequality holds true if $d=3$ and $\\lambda<0.3575$. More precise conjectures are also given.","PeriodicalId":8442,"journal":{"name":"arXiv: Combinatorics","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Matchings in regular graphs: minimizing the partition function\",\"authors\":\"M'arton Borb'enyi, P'eter Csikv'ari\",\"doi\":\"10.22108/TOC.2020.123763.1742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a graph $G$ on $v(G)$ vertices let $m_k(G)$ denote the number of matchings of size $k$, and consider the partition function $M_{G}(\\\\lambda)=\\\\sum_{k=0}^nm_k(G)\\\\lambda^k$. In this paper we show that if $G$ is a $d$--regular graph and $0 \\\\frac{1}{v(K_{d+1})}\\\\ln M_{K_{d+1}}(\\\\lambda).$$ The same inequality holds true if $d=3$ and $\\\\lambda<0.3575$. More precise conjectures are also given.\",\"PeriodicalId\":8442,\"journal\":{\"name\":\"arXiv: Combinatorics\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22108/TOC.2020.123763.1742\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/TOC.2020.123763.1742","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

对于一个图$G$在$v(G)$顶点上,设$m_k(G)$表示大小$k$的匹配个数,并考虑配分函数$M_{G}(\lambda)=\sum_{k=0}^nm_k(G)\lambda^k$。本文证明了$G$是$d$-正则图,且$0 \frac{1}{v(K_{d+1})}\ln M_{K_{d+1}}(\lambda)。如果$d=3$和$\lambda<0.3575$,同样的不等式成立。还给出了更精确的推测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Matchings in regular graphs: minimizing the partition function
For a graph $G$ on $v(G)$ vertices let $m_k(G)$ denote the number of matchings of size $k$, and consider the partition function $M_{G}(\lambda)=\sum_{k=0}^nm_k(G)\lambda^k$. In this paper we show that if $G$ is a $d$--regular graph and $0 \frac{1}{v(K_{d+1})}\ln M_{K_{d+1}}(\lambda).$$ The same inequality holds true if $d=3$ and $\lambda<0.3575$. More precise conjectures are also given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信