{"title":"正则图中的匹配:最小化配分函数","authors":"M'arton Borb'enyi, P'eter Csikv'ari","doi":"10.22108/TOC.2020.123763.1742","DOIUrl":null,"url":null,"abstract":"For a graph $G$ on $v(G)$ vertices let $m_k(G)$ denote the number of matchings of size $k$, and consider the partition function $M_{G}(\\lambda)=\\sum_{k=0}^nm_k(G)\\lambda^k$. In this paper we show that if $G$ is a $d$--regular graph and $0 \\frac{1}{v(K_{d+1})}\\ln M_{K_{d+1}}(\\lambda).$$ The same inequality holds true if $d=3$ and $\\lambda<0.3575$. More precise conjectures are also given.","PeriodicalId":8442,"journal":{"name":"arXiv: Combinatorics","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Matchings in regular graphs: minimizing the partition function\",\"authors\":\"M'arton Borb'enyi, P'eter Csikv'ari\",\"doi\":\"10.22108/TOC.2020.123763.1742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a graph $G$ on $v(G)$ vertices let $m_k(G)$ denote the number of matchings of size $k$, and consider the partition function $M_{G}(\\\\lambda)=\\\\sum_{k=0}^nm_k(G)\\\\lambda^k$. In this paper we show that if $G$ is a $d$--regular graph and $0 \\\\frac{1}{v(K_{d+1})}\\\\ln M_{K_{d+1}}(\\\\lambda).$$ The same inequality holds true if $d=3$ and $\\\\lambda<0.3575$. More precise conjectures are also given.\",\"PeriodicalId\":8442,\"journal\":{\"name\":\"arXiv: Combinatorics\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22108/TOC.2020.123763.1742\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/TOC.2020.123763.1742","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Matchings in regular graphs: minimizing the partition function
For a graph $G$ on $v(G)$ vertices let $m_k(G)$ denote the number of matchings of size $k$, and consider the partition function $M_{G}(\lambda)=\sum_{k=0}^nm_k(G)\lambda^k$. In this paper we show that if $G$ is a $d$--regular graph and $0 \frac{1}{v(K_{d+1})}\ln M_{K_{d+1}}(\lambda).$$ The same inequality holds true if $d=3$ and $\lambda<0.3575$. More precise conjectures are also given.