{"title":"3-刚性和二元$C_2^1$样条II:组合表征。","authors":"K. Clinch, B. Jackson, Shin-ichi Tanigawa","doi":"10.19086/da.34692","DOIUrl":null,"url":null,"abstract":"We showed in the first paper of this series that the generic $C_2^1$-cofactor matroid is the unique maximal abstract $3$-rigidity matroid. In this paper we obtain a combinatorial characterization of independence in this matroid. This solves the cofactor counterpart of the combinatorial characterization problem for the rigidity of generic 3-dimensional bar-joint frameworks. We use our characterization to verify that the counterparts of conjectures of Dress (on the rank function) and Lov\\'{a}sz and Yemini (which suggested a sufficient connectivity condition for rigidity) hold for this matroid.","PeriodicalId":8442,"journal":{"name":"arXiv: Combinatorics","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Abstract 3-Rigidity and Bivariate $C_2^1$-Splines II: Combinatorial Characterization.\",\"authors\":\"K. Clinch, B. Jackson, Shin-ichi Tanigawa\",\"doi\":\"10.19086/da.34692\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We showed in the first paper of this series that the generic $C_2^1$-cofactor matroid is the unique maximal abstract $3$-rigidity matroid. In this paper we obtain a combinatorial characterization of independence in this matroid. This solves the cofactor counterpart of the combinatorial characterization problem for the rigidity of generic 3-dimensional bar-joint frameworks. We use our characterization to verify that the counterparts of conjectures of Dress (on the rank function) and Lov\\\\'{a}sz and Yemini (which suggested a sufficient connectivity condition for rigidity) hold for this matroid.\",\"PeriodicalId\":8442,\"journal\":{\"name\":\"arXiv: Combinatorics\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.19086/da.34692\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19086/da.34692","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Abstract 3-Rigidity and Bivariate $C_2^1$-Splines II: Combinatorial Characterization.
We showed in the first paper of this series that the generic $C_2^1$-cofactor matroid is the unique maximal abstract $3$-rigidity matroid. In this paper we obtain a combinatorial characterization of independence in this matroid. This solves the cofactor counterpart of the combinatorial characterization problem for the rigidity of generic 3-dimensional bar-joint frameworks. We use our characterization to verify that the counterparts of conjectures of Dress (on the rank function) and Lov\'{a}sz and Yemini (which suggested a sufficient connectivity condition for rigidity) hold for this matroid.