3-刚性和二元$C_2^1$样条II:组合表征。

K. Clinch, B. Jackson, Shin-ichi Tanigawa
{"title":"3-刚性和二元$C_2^1$样条II:组合表征。","authors":"K. Clinch, B. Jackson, Shin-ichi Tanigawa","doi":"10.19086/da.34692","DOIUrl":null,"url":null,"abstract":"We showed in the first paper of this series that the generic $C_2^1$-cofactor matroid is the unique maximal abstract $3$-rigidity matroid. In this paper we obtain a combinatorial characterization of independence in this matroid. This solves the cofactor counterpart of the combinatorial characterization problem for the rigidity of generic 3-dimensional bar-joint frameworks. We use our characterization to verify that the counterparts of conjectures of Dress (on the rank function) and Lov\\'{a}sz and Yemini (which suggested a sufficient connectivity condition for rigidity) hold for this matroid.","PeriodicalId":8442,"journal":{"name":"arXiv: Combinatorics","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Abstract 3-Rigidity and Bivariate $C_2^1$-Splines II: Combinatorial Characterization.\",\"authors\":\"K. Clinch, B. Jackson, Shin-ichi Tanigawa\",\"doi\":\"10.19086/da.34692\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We showed in the first paper of this series that the generic $C_2^1$-cofactor matroid is the unique maximal abstract $3$-rigidity matroid. In this paper we obtain a combinatorial characterization of independence in this matroid. This solves the cofactor counterpart of the combinatorial characterization problem for the rigidity of generic 3-dimensional bar-joint frameworks. We use our characterization to verify that the counterparts of conjectures of Dress (on the rank function) and Lov\\\\'{a}sz and Yemini (which suggested a sufficient connectivity condition for rigidity) hold for this matroid.\",\"PeriodicalId\":8442,\"journal\":{\"name\":\"arXiv: Combinatorics\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.19086/da.34692\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19086/da.34692","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在本系列的第一篇论文中,我们证明了一般的$C_2^1$-协因子矩阵是唯一的极大抽象$3$-刚性矩阵。本文得到了该矩阵中独立性的一个组合表征。解决了一般三维杆节点框架刚度组合表征问题的协因子对应物。我们使用我们的表征来验证Dress(关于秩函数)和Lov\ {a}sz和Yemini(它提出了刚性的充分连通性条件)的猜想的对应物对该矩阵成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Abstract 3-Rigidity and Bivariate $C_2^1$-Splines II: Combinatorial Characterization.
We showed in the first paper of this series that the generic $C_2^1$-cofactor matroid is the unique maximal abstract $3$-rigidity matroid. In this paper we obtain a combinatorial characterization of independence in this matroid. This solves the cofactor counterpart of the combinatorial characterization problem for the rigidity of generic 3-dimensional bar-joint frameworks. We use our characterization to verify that the counterparts of conjectures of Dress (on the rank function) and Lov\'{a}sz and Yemini (which suggested a sufficient connectivity condition for rigidity) hold for this matroid.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信